首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27's effect on the insulin promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels, while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of insulin production.  相似文献   

10.
An appropriate regulation of the insulin production and secretion in pancreatic β-cells is necessary for the control of blood glucose homeostasis. The pancreatic duodenal homeobox factor-1 (Pdx-1) is among the various factors and signals which are implicated in the regulation of the insulin synthesis and secretion in the pancreatic β-cells. Recently, we identified Pdx-1 as a substrate for protein kinase CK2. Since CK2 is implicated in the regulation of many different cellular signaling pathways we now asked whether it might also be involved in the regulation of the insulin regulation in β-cells. Here, we show that insulin treatment of β-cells resulted in an elevated CK2 kinase activity. On the other hand down-regulation of CK2 activity by quinalizarin led to an elevated level of insulin. These results demonstrate that CK2 is implicated in the insulin regulation on pancreatic β-cells.  相似文献   

11.
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.  相似文献   

12.
13.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes.Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa.By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The lytic switch transactivator Zta initiates the ordered cascade of Epstein-Barr virus gene expression that culminates in virus production. Zta is a sequence-specific DNA-binding protein that transactivates early viral promotes via cis-acting sequences. Activation of some of these genes is mediated through binding to consensus AP-1 promoter elements. This observation suggests that Zta may also regulate the expression of cellular genes. While many targets of Zta have been identified in the Epstein-Barr virus genome, putative host cell targets remain largely unknown. To address this issue, a tetracycline-regulated Zta expression system was generated, and differential hybridization screening was used to isolate Zta-responsive cellular genes. The major target identified by this analysis is a gene encoding a fasciclin-like secreted factor, transforming growth factor beta igh3 (TGF-beta igh3), that was originally identified as a gene that is responsive to the potent immunosuppressor TGF-beta 1. Northern (RNA) blot analysis demonstrated that induction of Zta expression results in a 10-fold increase in TGF-beta igh3 mRNA levels. Zta was also found to increase TGF-beta 1 mRNA levels as well as the amount of active TGF-beta 1 secreted into the medium. Interestingly, alpha 1-collagen IV, which has been shown to potentiate the effects of TGF-beta 1, is also a cellular target of Zta. These results suggest that Zta could play a role in modulating the host cell environment through activating the expression of secreted factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号