首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel pyridine-3-propanoic acids was synthesized. A structure-activity relationship study of these compounds led to the identification of potent dual PPARalpha/gamma agonists with varied isoform selectivity. Based on the results of efficacy studies in diabetic (db/db) mice, and the desired pharmacokinetic parameters, compounds (S)-14 and (S)-19 were selected for further profiling.  相似文献   

2.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARalpha ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARalpha ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARalpha agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARalpha ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 +/- 2.5 mg/(kg.d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARalpha treatment did not alter expression of PPARalpha target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARalpha-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARalpha treatment did not improve cardiac function in diabetic hearts.  相似文献   

3.
Searching for new antiobesity agents, a new series of fatty acid amide derivatives of 1,5-diarylpyrazole have been synthesized as dual peroxisome proliferator activated receptor alpha (PPARalpha)/cannabinoid receptor ligands. The compounds have been evaluated in vivo and in vitro as PPARalpha activators and as cannabinoids in two tests of the mouse tetrad. In vivo, food intake studies have been performed with all the compounds. No significant cannabinoid activity has been found but some compounds behaved as potent PPARalpha activators. Several compounds showed anorexigenic properties reducing food intake in rats.  相似文献   

4.
A novel series of l-tyrosine derivatives have been reported with potential PPARalpha/gamma dual agonistic activity. In vitro cell based PPARalpha/gamma transactivation studies have shown compound 4a and compound 4f to be the most potent PPARgamma and PPARalpha activators, respectively. Molecular docking studies performed on these series of compounds have complemented the experimental results and have led to interesting inferences.  相似文献   

5.
Peroxisome proliferator-activated receptors (PPARs) and other members of the nuclear hormone receptor family are important drug targets for the treatment of metabolic diseases. PPARalpha and PPARgamma play crucial roles in lipid and glucose metabolism, respectively. Therefore, screening methods that help to rapidly identify activators of these receptors should be of considerable value. A homogeneous fluorescence polarization (FP) ligand binding assay capable of rapidly identifying ligands that bind to both PPARalpha and PPARgamma has been developed using purified PPARalpha or PPARgamma ligand binding domains and a fluorescein-labeled analog (FLA) of a potent dual PPARalpha/gamma activator. FLA activator showed good binding affinity toward both PPARalpha (K(i)=0.7microM) and PPARgamma (K(i)=0.4microM). The binding of FLA activator was rapid and reached a plateau within 10 min. The resulting FP signal was stable for at least 18h. The FP binding assay performed robustly in a 384-well format, and the average Z' value was 0.77. There was a good correlation between the binding potency (IC(50) values) and rank order of binding potency for a panel of standard PPAR ligands obtained in FP binding assay and scintillation proximity assay or gel filtration binding assays using (3)H-labeled PPARalpha (r(2)=0.99) and PPARgamma (r(2)=0.99) ligands. There was also a good correlation of IC(50) values obtained by FP binding assay and scintillation proximity assay for the clinically used PPAR activators. Thus, the FP binding assay with a single fluorescein-labeled PPARalpha/gamma dual activator offers a homogeneous nonradioactive, sensitive, robust, and less expensive high-throughput assay for detecting compounds that bind to both PPARgamma and PPARalpha. Using this FP binding assay, we have identified a large number of PPARalpha/gamma dual activators. A similar assay platform may be easily adapted to other members of the nuclear hormone receptor family.  相似文献   

6.
A series of 1,3-dioxane carboxylic acid derivatives was synthesized and evaluated for human PPAR transactivation activity. Structure-activity relationships on the phenyloxazole moiety of the lead compound 3 revealed that the introduction of small hydrophobic substituents at the 4-position of the terminal phenyl ring increased the PPARalpha agonist activity, and that the oxazole heterocycle was essential to the maintenance of both potency and PPARalpha subtype-selectivity. This investigation led to the identification of 14d (NS-220) and 14i as highly potent and selective human PPARalpha agonists. In KK-A(y) type 2 diabetic mice, these compounds significantly lowered plasma triglyceride and very-low-density plus low-density lipoprotein cholesterol levels while simultaneously raising HDL cholesterol levels. Our results suggest that highly potent and subtype-selective PPARalpha agonists will be promising drugs for the treatment of metabolic disorders in type 2 diabetes.  相似文献   

7.
Fibrates and glitazones are two classes of drugs currently used in the treatment of dyslipidemia and insulin resistance (IR), respectively. Whereas glitazones are insulin sensitizers acting via activation of the peroxisome proliferator-activated receptor (PPAR) gamma subtype, fibrates exert their lipid-lowering activity via PPARalpha. To determine whether PPARalpha activators also improve insulin sensitivity, we measured the capacity of three PPARalpha-selective agonists, fenofibrate, ciprofibrate, and the new compound GW9578, in two rodent models of high fat diet-induced (C57BL/6 mice) or genetic (obese Zucker rats) IR. At doses yielding serum concentrations shown to activate selectively PPARalpha, these compounds markedly lowered hyperinsulinemia and, when present, hyperglycemia in both animal models. This effect relied on the improvement of insulin action on glucose utilization, as indicated by a lower insulin peak in response to intraperitoneal glucose in ciprofibrate-treated IR obese Zucker rats. In addition, fenofibrate treatment prevented high fat diet-induced increase of body weight and adipose tissue mass without influencing caloric intake. The specificity for PPARalpha activation in vivo was demonstrated by marked alterations in the expression of PPARalpha target genes, whereas PPARgamma target gene mRNA levels did not change in treated animals. These results indicate that compounds with a selective PPARalpha activation profile reduce insulin resistance without having adverse effects on body weight and adipose tissue mass in animal models of IR.  相似文献   

8.
Using a known dual PPARalpha/gamma activator (5) as a structural template, SAR evaluations led to the identification of triple PPARalpha/gamma/delta activators (18-20) with equal potency and efficacy on all three receptors. These compounds could become useful tools for studying the combined biological effects of PPARalpha/gamma/delta activation.  相似文献   

9.
10.
Aryl-tetrahydropyridine derivatives were prepared and their PPARalpha/gamma dual agonistic activities were evaluated. Among them, compound (S)-5b was identified as a potent PPARalpha/gamma dual agonist with an EC(50) of 1.73 and 0.64 microM in hPPARalpha and gamma, respectively. In diabetic (db/db) mice, compound (S)-5b showed good glucose lowering efficacy and favorable pharmacokinetic properties.  相似文献   

11.
A series of novel pyridine-2-propanoic acids was synthesized. A structure-activity relationship study of these compounds led to the identification of potent dual PPARalpha/gamma agonists with varied isoform selectivity. Based on the results of efficacy studies in diabetic (db/db) mice, and the desired pharmacokinetic parameters, compound (S)-13 was selected for further profiling.  相似文献   

12.
13.
A series of amphipathic 3-phenylbenzisoxazoles were found to be potent agonists of human PPARalpha, gamma and delta. The optimization of acid proximal structure for in vitro and in vivo potency is described. Results of po dosed efficacy studies in the db/db mouse model of type 2 diabetes showed efficacy equal or superior to Rosiglitazone in correcting hyperglycemia and hypertriglyceridemia. Good functional receptor selectivity for PPARalpha and gamma over PPARdelta can be obtained.  相似文献   

14.
Oxazole containing glycine and oximinobutyric acid derivatives were synthesized as PPARalpha agonists by incorporating polymethylene spacer as a replacement of commonly used phenylene group that connects the acidic head with lipophilic tail. Compound 13a was found to be a selective and potent PPARalpha agonist. Further 1,3-dioxane-2-carboxylic acid derivative 20 was synthesized by replacing the tetramethylene spacer of NS-220, a selective PPARalpha agonist with phenylene group and found to exhibit PPARalpha/gamma dual agonism. These results suggest that compounds possessing polymethylene spacer between pharmacophore and lipophilic tail exhibit predominantly PPARalpha agonism whereas those with an aromatic phenylene spacer shows PPARalpha/gamma dual agonism.  相似文献   

15.
In the quest for novel PPARalpha/gamma co-agonists as putative drugs for the treatment of type 2 diabetes and dyslipidemia, we have used a structure-based design approach to identify propionic acids with a 1,5-disubstituted indole scaffold as potent PPARalpha/gamma activators. Compounds 13, 24, and 28 are examples of submicromolar dual agonists with different alpha/gamma EC50 ratios that are selective against the delta-isoform. Analysis of the X-ray complex structure of PPARgamma with the indole propionic acid 13 provides a rationalization for some of the observed SAR.  相似文献   

16.
Oxime ethers of alpha-acyl-beta-phenylpropanoic acids were prepared to apply as PPARalpha and gamma dual agonists. Among them, compound 11l proved to exhibit potent in vitro activities with EC(50) of 19 and 13nM in PPARalpha and gamma, respectively. It showed better glucose lowering effects than rosiglitazone 1 and ameliorated the lipid profile like plasma triglyceride in db/db mice model.  相似文献   

17.
Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin 1beta (IL-1beta). We tested whether ligands of the peroxisome proliferator-activated receptor (PPARalpha) could influence the cytokine-induced expression of MMP-9. Different PPARalpha agonists dose-dependently inhibited the IL-1beta-triggered increase in gelatinolytic activity mainly by decreasing the MMP-9 steady-state mRNA levels. PPARalpha agonists on their own had no effects on MMP-9 mRNA levels and gelatinolytic activity. Surprisingly, the reduction of MMP-9 mRNA levels by PPARalpha activators contrasted with an amplification of cytokine-mediated MMP-9 gene promoter activity and mRNA expression. The potentiation of MMP-9 promoter activity functionally depends on an upstream peroxisome proliferator-responsive element-like binding site, which displayed an increased DNA binding of a PPARalpha immunopositive complex. In contrast, the IL-1beta-induced DNA-binding of nuclear factor kappaB was significantly impaired by PPARalpha agonists. Most interestingly, in the presence of an inducible nitric-oxide synthase (iNOS) inhibitor, the PPARalpha-mediated suppression switched to a strong amplification of IL-1beta-triggered MMP-9 mRNA expression. Concomitantly, activators of PPARalpha potentiated the cytokine-induced iNOS expression. Using actinomycin D, we found that NO, but not PPARalpha activators, strongly reduced the stability of MMP-9 mRNA. In contrast, the stability of MMP-9 protein was not affected by PPARalpha activators. In summary, our data suggest that the inhibitory effects of PPARalpha agonists on cytokine-induced MMP-9 expression are indirect and primarily due to a superinduction of iNOS with high levels of NO reducing the half-life of MMP-9 mRNA.  相似文献   

18.
One new withanolide, (17S,20S,22R)-14alpha,15alpha,17beta,20beta-tetrahydroxy-1-oxowitha-2,5,24-trienolide) named coagulanolide (4) along with four known withanolides 1-3 and 5 have been isolated from Withania coagulans fruits and their structures were elucidated by spectroscopic techniques. The compounds 1-5 showed significant inhibition on postprandial rise in hyperglycemia post-sucrose load in normoglycemic rats as well as streptozotocin-induced diabetic rats. The compound 5 also showed significant fall on fasting blood glucose profile and improved the glucose tolerance of db/db mice. Further compound 5 showed antidyslipidemic activity in db/db mice. The median effective dose of the compound 5 was determined to be around 25 mg/kg in streptozotocin-induced diabetic rats, which is comparable to the standard antidiabetic drug metformin. Our results provide further support to explain the traditional use of W. coagulans as antihyperglycemic cum antidyslipidemic agent by the traditional medical practitioners.  相似文献   

19.
Activators of peroxisome proliferator activated receptors (PPARs) are effective drugs to improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin-resistance, and atherosclerosis. We compared the pharmacological profile of a PPARalpha activator, fenofibrate, and a PPARgamma activator, rosiglitazone, on serum parameters, target gene expression, and body weight gain in (fa/fa) fatty Zucker rats and db/db mice as well as their association in db/db mice. Fenofibrate faithfully modified the expression of PPARalpha responsive genes. Rosiglitazone increased adipose tissue aP2 mRNA in both models while increasing liver acyl CoA oxidase mRNA in db/db mice but not in fatty Zucker rats. Both drugs lowered serum triglycerides yet rosiglitazone markedly increased body weight gain while fenofibrate decreased body weight gain in fatty Zucker rats. KRP 297, which has been reported to be a PPARalpha and gamma co-activator, also affected serum triglycerides and insulin in fatty Zucker rats although no change in body weight gain was noted. These results serve to clearly differentiate the metabolic finality of two distinct classes of drugs, as well as their corresponding nuclear receptors, having similar effects on serum triglycerides.  相似文献   

20.
The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号