首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.  相似文献   

2.
Cell-type-specific antibodies have been used to follow the appearance of neurones and glia in the developing nervous system of the amphibian embryo. Differentiated neurones were recognized with antibodies against neurofilament protein while glial cells were identified with antibodies against glial fibrillary acidic protein (GFAP). The appearance of neurones containing the neurotransmitters 5-hydroxytryptamine and dopamine has been charted also. In Xenopus, neurofilament protein in developing neurones was observed occasionally at NF stage 21 and was present reliably in the neural tube and in caudal regions of the brain at stage 23. Antibodies to the low molecular weight fragment of the neurofilament triplet recognized early neurones most reliably. Radial glial cells, identified with GFAP antibody, were identified from stage 23 onwards in the neural tube and caudal regions of the brain. In the developing spinal cord, GFAP staining was apparent throughout the cytoplasm of each radial glial cell. In the brain, the peripheral region only of each glial cell contained GFAP. By stage 36, immunohistochemically recognizable neurones and glia were present throughout the nervous system. In the axolotl, by stage 36 the pattern of neural and glial staining was identical to that observed in Xenopus. GFAP staining of glial cells was obvious at stage 23, although neuronal staining was clearly absent. This implies that glial cells differentiate before neurones. 5-HT-containing cell bodies were first observed in caudal regions of the developing brain on either side of the midline at stage 26. An extensive network of 5-HT neurones appeared gradually, with a substantial subset crossing to the opposite side of the brain through the developing optic chiasma. 5,7-dihydroxytryptamine prevented the appearance of 5-HT. Depletion of 5-HT had little effect on development or swimming behaviour. Dopamine-containing neurones in the brain first differentiated at stage 35-36 and gradually increased in number up to stage 45-47, the latest stage examined. The functional role of 5-HT- or dopamine-containing neurones remains to be elucidated. We conclude that cell-type-specific antibodies can be used to identify neurones and glial cells at early times during neural development and may be useful tools in circumstances where functional identification is difficult.  相似文献   

3.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period.  相似文献   

4.
The enteric nervous system consists of a number of interconnected networks of neuronal cell bodies and fibers as well as satellite cells, the enteric glia. Basic fibroblast growth factor (bFGF) is a mitogen for a variety of mesodermal and neuroectodermal-derived cells and its presence has been described in many tissues. The present work employs immunohistochemistry to analyze neurons and glial cells in the esophageal and colic enteric plexus of the Wistar rat for neurofilament (NF) and glial fibrillary acidic proteins (GFAP) immunoreactivity as well as bFGF immunoreactivity in these cells. Rats were processed for immunohistochemistry; the distal esophagus and colon were opened and their myenteric plexuses were processed as whole-mount preparations. The membranes were immunostained for visualization of NF, GFAP, and bFGF. NF immunoreactivity was seen in neuronal cell bodies of esophageal and colic enteric ganglia. GFAP-immunoreactive enteric glial cells and processes were present in the esophageal and colic enteric plexuses surrounding neuronal cell bodies and axons. A dense net of GFAP-immunoreactive processes was seen in the ganglia and connecting strands of the myenteric plexus. bFGF immunoreactivity was observed in the cytoplasm of the majority of the neurons in the enteric ganglia of esophagus and colon. The two-color immunoperoxidase and immunofluorescence methods revealed bFGF immunoreactivity also in the nucleus of GFAP-positive enteric glial cells. The results suggest that immunohistochemical localization of NF and GFAP may be an important tool in the study of the plasticity in the enteric nervous system. The presence of bFGF in neurons and glia of the myenteric plexus of the esophagus and the colon indicates that this neurotrophic factor may exert autocrine and paracrine actions in the enteric nervous system.  相似文献   

5.
The monoclonal antibody (mAb) neuronal nuclei (NeuN) labels the nuclei of mature neurons in vivo in vertebrates. NeuN has also been used to define post-mitotic neurons or differentiating neuronal precursors in vitro . In this study, we demonstrate that the NeuN mAb labels the nuclei of astrocytes cultured from fetal and adult human, newborn rat, and embryonic mouse brain tissue. A non-neuronal fibroblast cell line (3T3) also displayed NeuN immunoreactivity. We confirmed that NeuN labels neurons but not astrocytes in sections of P10 rat brain. Western blot analysis of NeuN immunoreactive species revealed a distribution of bands in nucleus-enriched fractions derived from the different cell lines that was similar, but not identical to adult rat brain homogenates. We then examined the hypothesis that the glial fibrillary acidic protein/NeuN-double positive population of cells might correspond to neuronal precursors. Although the NeuN-positive astrocytes were proliferating, no evidence of neurogenesis was detected. Furthermore, expression of additional neuronal precursor markers was not detected. Our results indicate that primary astrocytes derived from mouse, rat, and human brain express NeuN. Our findings are consistent with NeuN being a selective marker of neurons in vivo , but indicate that studies utilizing NeuN-immunoreactivity as a definitive marker of post-mitotic neurons in vitro should be interpreted with caution.  相似文献   

6.
The successful integration of stem cells after their implantation into the brain has become a central issue in modern neuroscience. In this study, we test the neural differentiation potential of c-Kit+/Oct-4+ human amniotic fluid stem cells (hAFSCs) in vitro and their survival and integration in vivo. hAFSCs were induced towards neural differentiation and specific markers (GFAP, β-III tubulin, CNPase, MAP2, NeuN, synapsines, S100, PMP22) were detected by immunofluorescence and Western blot analysis. Glial proteins were expressed as early as 2 weeks after the initial differentiation stimulus, whereas neuronal markers started to appear from the third week of differentiation under culturing conditions of high cell density. This timeline suggested that glial cells possessed a promoting role in the differentiation of hAFSCs towards a neuronal fate. hAFSCs were then implanted into the lateral ventricle of the brain of 1-day-old rats, since neuronal development occurs up to 1 month after birth in this animal model. Our data showed that hAFSCs survived for up to 6 weeks post-implantation, were integrated into various areas of the central nervous system and migrated away from the graft giving rise to mature neurons and oligodendrocytes. We conclude that hAFSCs are able to differentiate and integrate into nervous tissue during development in vivo.  相似文献   

7.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region‐specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal‐specific nuclear protein (NeuN) and microtubule‐associated protein (MAP‐2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 288–298, 2003  相似文献   

8.
We have studied in vitro the morphology of two populations of dopaminergic neurons from mouse embryos: the periglomerular interneurons from the olfactory bulb (DOBI) and the efferent neurons from the substantia nigra (DENN). The intrinsic potential of both neuronal types has been studied by comparing process outgrowth in a predominantly neuronal environment or in a glial environment that is endogenous or from other brain regions. Both populations exhibit in vitro different characteristics that reflect their phenotype in situ. In addition they greatly differ in their response to glial signals. DOBI maintain a constant stellate morphology with short processes under all culture conditions tested, whereas DENN exhibit a great plasticity and in particular respond to olfactory bulb glia with a striking increase in neurite length. The olfactory bulb glia differs from other brain region glia in two aspects: (a) in addition to type I astrocytes, common to all the glial monolayers that we have studied, it contains a population of fusiform astrocytes (GFAP+) that might represent the superficial glia (Raisman, 1985); and (b) both astrocytes and fusiform cells produce large amounts of laminin that is secreted in a thick extracellular matrix. DENN outgrowth on olfactory bulb glia, however, is not blocked by antilaminin antibodies that block outgrowth on a laminin substrate. Our results demonstrate that two neuronal populations sharing the same neurotransmitter present intrinsic differences in the control of cell shape. The fact that glia harvested from different brain regions supports varying extent of DENN neurite outgrowth suggests a heterogeneity of environmental signals throughout the developing brain.  相似文献   

9.
Glutamate excitotoxicity plays a key role in inducing neuronal cell death in many neurological diseases. In mice, intranasal administration of kainic acid (KA), an analogue of the excitotoxin glutamate, results in hippocampal cell death and provides a well-characterized model for studies of human neurodegenerative diseases. In this study, we describe neurodegeneration and gliosis following intranasal administration of KA in C57BL/6 mice. By using Nissl's staining, neurodegeneration was found in area CA3 of hippocampus, and neuronal apoptosis was demonstrated by enhanced FAS(CD95/APO-1) expression detected by immunohistochemistry and Western blotting. Astrogliosis was exhibited by increased glial fibrillary acidic protein (GFAP) expression in the hippocampus and cortex. We also studied the profile of molecular expression on microglia in C57BL/6 mice. One and 3 days after KA administration, CD45, F4/80, CD86, MHCII, iNOS but not CD40 expression was enhanced or induced on microglia. In summary, KA administration results in an early microglial activation and a prolonged astrogliosis in C57BL/6 mice.  相似文献   

10.
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.  相似文献   

11.
Neuronal nuclear antigen (NeuN), discovered in mice brain cell nuclei by Mullen et al. (1992), is used as an excellent marker of post-mitotic neurons in vertebrates. In this study, the expression pattern of NeuN was examined in the Xenopus brain to explore phylogenetic differences in NeuN expression. Anti-NeuN antibody showed selective staining in mouse and Xenopus brain extracts, but the number and molecular weight of the bands differed in Western blotting analysis. In immunostaining, anti-NeuN antibody showed selective staining of neurons, but not glial cells, in the Xenopus brain. Most neurons, including olfactory bulb mitral cells and cerebellar Purkinjie cells, which show no immunoreactivity in birds/mammals, showed NeuN immunoreactivity in Xenopus. This study revealed that anti-NeuN antibody is a useful marker of post-mitotic neurons in amphibians, but it also stains neurons that show no reactivity in more derived animals.  相似文献   

12.
Cyclooxygenases (cox) are potent mediators of inflamation and two cox-izoenzymes, cox-1, cox-2, are described to date. Cox-2 is cytokine-inducible in inflammatory cells and enhanced cox-2 expression has been attributed a key role in the development of edema and immunomodulation in pathologically altered brain tissues. In normal cerebral cortex cox-2 is present only in neurons, but not in the glial or vascular endothelial cells. The function of microglia in glioma biology is unclear. Microglia have both neurotrophic and neurotoxic functions and have been shown to release a variety of cytokines. Our preliminary results showed that the expression pattern of cox-2 is predominantly neuronal although glial expression was observed with the correlation of high malignancy. In this study we aimed to assess the phenotypes (astrocyte, microglia) of the cox-2-expressing glial cells in various types of human gliomas and to compare their expression patterns. For this purpose we employed dual immunohistochemistry for cox-2 and GFAP (astrocyte) or LCA-MAC (microglia-macrophage) in archival formalin-fixed, paraffin embedded human tissue diagnosed as oligodendroglioma and/or astrocytoma. The results showed that cox-2 immunoreactivity is up-regulated in the neurons according to the tumor grade. Most of the cox-2 immunoreactive glia were GFAP-positive in anaplastic oligodendrogliomas and at lesser extend in glioblastomas. Cox-2 and LCA co-localization was detected in more glial cells in glioblastomas. It may be speculated that the induction of cox-2 in microglia may contribute to the deleterious effects of prostanoids in cerebral edema formation during the progression of oligodendrogliomas. The detection of cox-2 in astrocytes surrounding the necrotic areas might be important to develop new strategies, such as the usage of cox-2 inhibitors combine with chemotherapy and radiotherapy in the treatment of glioma patients.  相似文献   

13.
Glial fibrillary acidic protein (GFAP) is a commonly used marker to identify enteric glia in the mammalian gut. Little is however known about enteric glia in other vertebrates. The aim of the present study was to examine the distribution of GFAP immunoreactivity in adult and developing fish. In adult shorthorn sculpin (Myoxocephalus scorpius) and zebrafish (Danio rerio), GFAP immunoreactivity was seen in the myenteric plexus in all regions of the gut. Co-staining for the neuronal markers Hu C/D and acetylated tubulin showed that GFAP immunoreactivity was not associated with nerves. GFAP immunoreactivity was predominantly seen in processes with few glial cell bodies being demonstrated in adult fish. GFAP immunoreactivity was also found in the gut in larval zebrafish from 3 days post-fertilisation, i.e. at approximately the same time that differentiated enteric nerve cells first occur. Immunoreactivity was most prominent in areas with no or a low density of Hu-immunoreactive nerve cell bodies, indicating that the developing glia follows a different pattern from that of enteric neurons. The results suggest that GFAP can be used as a marker for enteric glia in fish, as in birds and mammals. The distribution of GFAP immunoreactivity implies that enteric glia are widespread in the fish gastrointestinal tract. Glia and neurons diverge early during development of the gastrointestinal tract.  相似文献   

14.
Abstract: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ , is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.  相似文献   

15.
1. The neuroprotective effect of Ginkgo biloba extract (EGb 761) against transient forebrain ischemia following 7 days of reperfusion was studied in male Wistar rats after four-vessel occlusion for 20 min.2. NeuN, a neuronal specific nuclear protein was used for immunohistochemical detection of surviving pyramidal neurons in the hippocampus, as well as counterstaining with hematoxylin in the same sections for detection of neurons that underwent delayed neuronal death and for glial nuclei staining. GFAP immunohistochemistry was used for detection of astrocytes in the studied area of CA1 region.3. In the group of rats pretreated 7 days with Ginkgo biloba extract (EGb 761), following 20 min of ischemia and 7 days of reperfusion without EGb 761, increased number of NeuN immunoreactive cells were counted in the most vulnerable CA1 pyramidal layer of hippocampus. On the other hand, the group of rats with 7 days of EGb 761 pretreatment following 20 min of ischemia and 7 days of reperfusion with EGb 761 showed decreased number of surviving NeuN immunoreactive CA1 pyramidal cells in comparison with the first above-mentioned experimental group.4. Increased number of reactive astrocytes immunolabeled for GFAP (Glial fibrilary acidic protein) was observed in both experimental groups in the stratum oriens and stratum lacunosum and moleculare.5. Twenty minutes of ischemia is lethal for most population of CA1 pyramidal cell layer. Our results showed that prophylactic oral administration of Ginkgo biloba extract (EGb 761) in the dose 40 mg/kg/day during the 7 days protects the most vulnerable CA1 pyramidal cells against 20 min of ischemia.  相似文献   

16.
This study comparatively investigated the effectiveness of calcium and other well‐known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose‐derived stem cells (ADSCs) into neuronal‐like cells. ADSCs were immunophenotyped and differentiated into neuron‐like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron‐specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real‐time polymerase chain reaction (quantitative real‐time polymerase chain reaction (qRT‐PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite‐like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron‐like cells and instantaneous increase in the expression of neuronal markers.  相似文献   

17.
The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa) with overlapping distributions. Synemin M was present early with vimentin and nestin. Synemin H was found later in the nervous system and mesodermic derivatives concomitantly with angiogenesis and the migration of neural crest cells. Synemin L appeared later in neurons. A series of in vitro cell cultures were done to identify the linkage between synemin isoforms and specific cell types of the central nervous system (CNS). The neurons and glia from the brains of humans and rats were cultured and double immunostaining done with antibodies against the H/M or L synemin isoforms and neural cell types (βIII-tubulin or NeuN) or astrocyte intermediate filaments (GFAP or vimentin). In neurons of the CNS, synemin H/M were co-expressed with GFAP, vimentin or nestin in glial cells, whereas synemin L was found in neurons.  相似文献   

18.
The expression patterns of adenosine A(1) receptors (A(1)Rs), adenosine deaminase (ADA) and ADA binding protein (CD26) were studied in goldfish brain using mammalian monoclonal antibody against A(1)R and polyclonal antibodies against ADA and CD26. Western blot analysis revealed the presence of a band of 35 kDa for A(1)R in membrane preparations and a band of 43 kDa for ADA in both cytosol and membranes. Immunohistochemistry on goldfish brain slices showed that A(1) receptors were present in several neuronal cell bodies diffused in the telencephalon, cerebellum, optic tectum. In the rhombencephalon, large and medium sized neurons of the raphe nucleus showed a strong immunopositivity. A(1)R immunoreactivity was also present in the glial cells of the rhombencephalon and optic tectum. An analogous distribution was observed for ADA immunoreactivity. Tests for the presence of CD26 gave positive labelling in several populations of neurons in the rhombencephalon as well as in the radial glia of optic tectum, where immunostaining for ADA and A(1)R was observed. In goldfish astrocyte cultures the immunohistochemical staining of A(1)R, ADA and CD26, performed on the same cell population, displayed a complete overlapping distribution of the three antibodies. The parallel immunopositivity, at least in some discrete neuronal areas, for A(1)Rs, ADA and CD26 led us to hypothesize that a co-localization among A(1)R, ecto-ADA and CD26 also exists in the neurons of goldfish since it has been established to exist in the neurons of mammals. Moreover, we have demonstrated for the first time, that A(1)R, ecto-ADA and CD26 co-localization is present on the astroglial component of the goldfish brain. This raises the possibility that a similar situation is also shown in the glia of the mammalian brain.  相似文献   

19.
Glia mediate neuroendocrine and neuroimmune functions that are altered during the process of normal aging. The biological functions of glia are also important in synaptic remodeling and the loss of synaptic connections that occur during aging. These functions are carried out by changes in glia, including changes in shape, interactions with neurons and other glia, and gene expression. The predominant change that occurs in glia during aging is glial activation, which can progress to reactive gliosis in response to neurodegeneration. More markers are needed to distinguish normal and reactive glia. During aging, astrocytes hypertrophy and exhibit signs of metabolic activation, and astrocytic processes surround neurons. Microglia also become activated and subsets of activated microglial increase in number and may enter the phagocytic or reactive stage. Glial markers of brain aging and glial activation include glial fibrillary acidic protein (GFAP) and transforming growth factor (TGF)-beta1, which are increased in astrocytes and microglia, respectively. Steroids regulate the interactions between glia and neurons and glial gene expression, including GFAP and TGF-beta1. Therefore, changes in these parameters during aging may be due to altered steroid regulation. In general, the effects of steroids oppose the effects of aging. Recent data indicate that steroid treatment can decrease the expression of GFAP in the aged brain, yet GFAP is resistant to down-regulation by endogenous glucocorticoids. Cellular and molecular markers of glial activation are being used to determine how changes in neuroendocrine and neuroimmune regulation contribute to repair and functional recovery that may reverse synaptic loss and cognitive impairment during aging.  相似文献   

20.
In this study, we outline a standardized protocol for the successful cryopreservation and thawing of cortical brain tissue blocks to generate highly enriched neuronal cultures. For this protocol the freezing medium used is 10% dimethyl sulfoxide (DMSO) diluted in Hank''s Buffered Salt Solution (HBSS). Blocks of cortical tissue are transferred to cryovials containing the freezing medium and slowly frozen at -1°C/min in a rate-controlled freezing container. Post-thaw processing and dissociation of frozen tissue blocks consistently produced neuronal-enriched cultures which exhibited rapid neuritic growth during the first 5 days in culture and significant expansion of the neuronal network within 10 days. Immunocytochemical staining with the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal marker beta-tubulin class III, revealed high numbers of neurons and astrocytes in the cultures. Generation of neural precursor cell cultures after tissue block dissociation resulted in rapidly expanding neurospheres, which produced large numbers of neurons and astrocytes under differentiating conditions. This simple cryopreservation protocol allows for the rapid, efficient, and inexpensive preservation of cortical brain tissue blocks, which grants increased flexibility for later generation of neuronal, astrocyte, and neuronal precursor cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号