首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins similar to parapinopsin, these results implied that ancestral bistable opsins might acquire coupling to the transducin-mediated cascade and achieve light-dependent hyperpolarizing response of the photoreceptor cells.  相似文献   

2.
Functional coupling of the human thrombin receptor PAR1 (protease-activated receptor 1) with the retinal rod G-protein transducin (Gt, a member of the Gi family) was studied in a reconstituted system of membranes from Sf9 cells expressing the thrombin receptor and purified Gt from bovine rod outer segments. TRAP6-agonist-activated PAR1 interacts productively with the distant G-protein. Agonist-dependent Gt activation was measured using a real-time fluorimetric GTP[S]-binding assay and membranes from Sf9 cells. To characterize nucleotide-exchange catalysis by PAR1, we analyzed dependence on nucleotides, temperature and pH. Activation was inhibited by low GDP concentrations (IC50 = 5.2 +/- 1.5 microM at 5 microM GTP[S]), indicating that receptor-Gt coupling, followed by instantaneous GDP release, is rate limiting under the conditions (25 degrees C). Arrhenius plots of the temperature dependence reflect an apparent Ea of 60 +/- 3.5 kJ.mol-1. Evaluation of the pH/rate profiles of Gt activation indicates that the activating conformation of the receptor is determined by protonation of a titratable group with an apparent pKa of 6.4. This supports the idea that the active state of agonist-bound PAR1 depends on forced protonation, indicating possible analogies to the scheme established for rhodopsin.  相似文献   

3.
The chicken pineal gland is a photosensitive neuroendocrine organ producing melatonin in circadian clock-regulated and light-sensitive manners. To understand the relationship between the photoreceptive molecule pinopsin and the light-dependent melatonin suppression that is sensitive to pertussis toxin treatment, we have searched for pertussis toxin-sensitive G protein alpha-subunits expressed in the chicken pineal gland. Here we report the cDNA cloning of the pineal transducin alpha-subunit (Gtalpha), which is highly homologous to human retinal rod cell-specific Gt(1)alpha. Concurrent cDNA cloning of chicken retinal Gt(1)alpha and Gt(2)alpha (rod and cone cell-specific alpha-subunits of transducin, respectively) revealed that the chicken pineal Gtalpha is identical to the retinal Gt(1)alpha. Double-immunostaining analysis of the chicken pineal sections localized Gt(1)alpha-immunoreactivity in the rudimentary outer segments of both follicular and parafollicular pinealocytes that were immunopositive to anti-pinopsin antibody. To examine whether pineal Gt(1)alpha is involved in the pineal phototransduction pathway, trypsin protection assay was applied for detecting the conversion of GDP-bound Gt(1)alpha into the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-bound form in the pineal membrane homogenate. It was clearly demonstrated that the pineal Gt(1)alpha is activated in a light-dependent manner in the presence of GTPgammaS. These data together suggest strongly that pineal Gt(1)alpha mediates the phototransduction pathway triggered by pinopsin in the chicken pinealocytes.  相似文献   

4.
The present study demonstrates some important facts on the regeneration of rhodopsin in rod outer segment membranes. 11-cis-Retinal added to a rod outer segment membrane suspension did not react directly with opsin but was rapidly solubilized into membranes and then recombined with opsin in the membrane. It was also revealed that the regeneration of rhodopsin was perturbed by the formation of retinylidene Schiff base with phosphatidylethanolamine in rod outer segment membranes, which decreased with increasing temperature. The activation energy of rhodopsin regeneration in rod outer segment membranes was 18.7 kcal/mol, being smaller than the value of 22 kcal/mol in 1% digitonin solution. 11-cis-Retinal could be found to transfer relatively fast (tau-1/k(1) R 10(3) s) between rod outer segment membranes by using the regeneration of rhodopsin. It was demonstrated that the kinetic measurement for the transport of membrane-soluble molecules such as retinal between membranes could be perform ed with ease and precisely by the method described in this paper.  相似文献   

5.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

6.
An electropermeabilized preparation of frog retinal rod outer segments (ROS) has been developed to examine the light sensitivity and amplification of visual transduction reactions in a minimally disturbed environment. Electropermeabilized ROS are indistinguishable from whole and osmotically intact ROS in the light microscope and retain 3-fold more protein than mechanically disrupted ROS. They differ from mechanically fragmented ROS in several respects. Illumination results in more amplified activation of the GTP-binding protein transducin (Gt) than previously observed: bleaching as little as approximately 1 rhodopsin molecule (Rho*) in every 10 disks within a single ROS activates 37,000 molecules of Gt per Rho*, equivalent to 70% of the light-activatable Gt present on a single disk face. This amplification is maintained over approximately 1 decade of light intensity but drops sharply as disk faces begin to absorb a second photon. Lower amplification is observed in fragmented ROS and derives from the fact that physical disruption of ROS causes Gt to bind GTP and elute from the membrane, thus decreasing the amount remaining and available for light activation. Illumination of electropermeabilized ROS in the presence of GTP or of the nonhydrolyzable substrate guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) causes redistribution of Gt: an amount (approximately 20 mmol/mol Rho) equivalent to the amount of inhibitory gamma subunit of phosphodiesterase (PDE) remains internal and bound to nucleotide, and the remaining activated Gt diffuses out in a manner graded with light intensity. This suggests that PDE activation by Gt alpha may not require dissociation of Gt alpha bound to the gamma subunit of PDE in a form than can elute from ROS. Two further differences between electropermeabilized and mechanically disrupted ROS are noted: the addition of ATP to electropermeabilized ROS does not affect the light sensitivity or kinetics of the GTP binding reaction, and a specificity for light-induced GTP versus GDP binding is observed.  相似文献   

7.
Surface plasmon resonance (SPR) spectroscopy can provide useful information regarding average structural properties of membrane films supported on planar solid substrates. Here we have used SPR spectroscopy for the first time to monitor the binding and activation of G-protein (transducin or Gt) by bovine rhodopsin incorporated into an egg phosphatidylcholine bilayer deposited on a silver film. Rhodopsin incorporation into the membrane, performed by dilution of a detergent solution of the protein, proceeds in a saturable manner. Before photolysis, the SPR data show that Gt binds tightly (Keq approximately equal to 60 nM) and with positive cooperativity to rhodopsin in the lipid layer to form a closely packed film. A simple multilayer model yields a calculated average thickness of about 57 A, in good agreement with the structure of Gt. The data also demonstrate that Gt binding saturates at a Gt/rhodopsin ratio of approximately 0.6. Moreover, upon visible light irradiation, characteristic changes occur in the SPR spectrum, which can be modeled by a 6 A increase in the average thickness of the lipid/protein film caused by formation of metarhodopsin II (MII). Upon subsequent addition of GTP, further SPR spectral changes are induced. These are interpreted as resulting from dissociation of the alpha-subunit of Gt, formation of new MII-Gt complexes, and possible conformational changes of Gt as a consequence of complex formation. The above results clearly demonstrate the ability of SPR spectroscopy to monitor interactions among the proteins associated with signal transduction in membrane-bound systems.  相似文献   

8.
The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer.  相似文献   

9.
In rod photoreceptor cells, the light response is triggered by an enzymatic cascade that causes cGMP levels to fall: excited rhodopsin (Rho*)----rod G-protein (transducin, Gt)----cGMP-phosphodiesterase (PDE). This results in the closure of plasma membrane channels that are gated by cGMP. PDE activation by Gt occurs when GDP bound to the alpha-subunit of Gt (Gt alpha) is exchanged with free GTP. The interaction of Gt alpha-GTP with the gamma-subunits of PDE releases their inhibitory action and causes cGMP hydrolysis. Inactivation is thought to be caused by subsequent hydrolysis of Gt alpha-GTP by an intrinsic Gt-GTPase activity. Here we report that there are two portions of Gt in frog rod outer segments (ROS) expressing different rates of GTP hydrolysis: 19.5 +/- 3 mmol of Gt/mol of Rho, equivalent to that amount which participates in PDE activation, hydrolyzing GTP at a rate of approximately 0.6 turnover/s ("fast") and the remaining Gt (80.5 +/- 3 mmol/mol Rho) hydrolyzing GTP at a rate of 0.058 +/- 0.009 turnover/s. Fast GTPase activity is abolished in the presence of cGMP. This effect occurs over the physiological range of cGMP concentration changes in ROS, half-saturating at approximately 2 microM and saturating at 5 microM cGMP. cGMP-dependent suppression of GTPase is specific for cGMP; cAMP in millimolar concentration does not affect GTPase, while the poorly hydrolyzable cGMP analogue, 8-bromo-cGMP, mimics the effect. GTPase regulation by cGMP is not affected by Ca2+ over the concentration range 5-500 nM, which spans the physiological changes in cytoplasmic Ca2+ in rod cells. We suggest that the fast cGMP-sensitive GTPase activity is a property of the Gt that activates PDE. In this model, cGMP serves not only as a messenger of excitation but also modulates GTPase activity, thereby mediating negative feedback regulation of the pathway via PDE turnoff: a light-dependent decrease in cGMP accelerates the hydrolysis of GTP bound to Gt, resulting in the rapid inactivation of PDE.  相似文献   

10.
We have measured the activation by recombinant rhodopsin of the alpha-subunit (alpha 1) of retinal transducin (Gt, also recombinant) using a new assay. Cultured cells are transiently transfected with DNAs encoding opsin and the three subunits of Gt (alpha t, beta 1 and gamma 1). In the microsomes of these cells, incubated with 11-cis-retinal, light causes the rapid activation of Gt, as measured by the ability of GTP gamma S to protect alpha t fragments from proteolytic degradation. The activation of Gt is also observed when all-trans-retinal is added to microsomes under constant illumination. Activation depends on both opsin and retinal. Opsin mutants with known defects in activating Gt show similar defects in this assay. alpha t mutations that mimic the corresponding mutations in the alpha-subunit of Gs also produce qualitatively similar effects in this assay. As a first step in a strategy aimed at exploring the relationships between structure and function in the interactions of receptors with G proteins, we tested mutant alpha t proteins with alanine substituted for each of the 10 amino acids at the C-terminus, a region known to be crucial for interactions with rhodopsin. Alanine substitution at four positions moderately (K341) or severely (L344, G348, L349) impairs the susceptibility of alpha 1 to activation by rhodopsin. All four mutants retain their ability to be activated by AIF-4. Two other substitutions (N343 and F350) resulted in very mild defects, while substitutions at the remaining four positions (E342, K345, D346 and C347) had no effect. In combination with previous observations, these results constrain models of the interaction of the C-terminus of alpha t with rhodopsin.  相似文献   

11.
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change (delta Hcal) of 700 +/- 17 kJ/mol rhodopsin. Bleached rod outer segment disk membranes (membranes that had lost their absorbance at 498 nm after exposure to orange light) gave a single major endotherm with a Tm of 55.9 +/- 0.3 degrees C and a delta Hcal of 520 +/- 17 kJ/mol opsin. Neither bleached nor unbleached rod outer segment disk membranes gave endotherms upon thermal rescans. When thermal stability is examined over the pH range of 4-9, the major endotherms of both bleached and unbleached rod outer segment disk membranes were found to show maximum stability at pH 6.1. The observed delta Hcal values for bleached and unbleached rod outer segment disk membranes exhibit membrane concentration dependences which plateau at protein concentrations beyond 1.5 mg/mL. For partially bleached samples of rod outer segment disk membranes, the calorimetric enthalpy change for opsin appears to be somewhat dependent on the degree of bleaching, indicating intramembrane nearest neighbor interactions which affect the unfolding of opsin. Delta Hcal and Tm are particularly useful for assessing stability and testing for completeness of regeneration of rhodopsin from opsin. Other factors such as sample preparation and the presence of low concentrations of ethanol also affect the delta Hcal values while the Tm values remain fairly constant. This shows that the delta Hcal is a sensitive parameter for monitoring environmental changes of rhodopsin and opsin.  相似文献   

12.
Bovine retinas incubated with [3H]myristic acid incorporated detectable radiolabel into only a few proteins. The most heavily labeled was the alpha subunit of the rod outer segment G protein transducin (Gt alpha). The radiolabeled protein was specifically eluted from illuminated membranes in the presence of GTP, displaying the unique solubility properties of Gt alpha. It comigrated with Gt alpha in electrophoresis and chromatography and was immunoprecipitated by Gt alpha-specific antibodies. The radiolabel was confirmed by hydrolysis, chemical derivatization, and chromatography to be amide-linked myristic acid. The solubility of the myristoylated Gt alpha indicates that myristoylation is not sufficient to cause tight membrane association of this normally membrane-bound subunit. Incorporation of [3H]myristate was blocked by the protein synthesis inhibitor cycloheximide, suggesting that that fatty acid group is introduced during or soon after translation in the rod inner segment.  相似文献   

13.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

14.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

15.
Vertebrate opsins are classified into one of five classes on the basis of amino acid similarity. These classes are short wavelength sensitive 1 and 2 (SWS1, SWS2), medium/long wavelength sensitive (M/LWS), and rod opsin like 1 and 2 (RH1, RH2). In bovine rod opsin (RH1), two critical amino acids form a salt bridge in the apoprotein that maintains the opsin in an inactive state. These residues are K296, which functions as the chromophore binding site, and E113, which functions as the counterion to the protonated Schiff base. Corresponding residues in each of the other vertebrate opsin classes are believed to play similar roles. Previous reports have demonstrated that mutations in these critical residues result in constitutive activation of transducin by RH1 class opsins in the absence of chromophore. Additionally, recent reports have shown that an E113Q mutation in SWS1 opsin is constitutively active. Here we ask if the other classes of vertebrate opsins maintain activation characteristics similar to that of bovine RH1 opsin. We approach this question by making the corresponding substitutions which disrupt the K296/E113 salt bridge in opsins belonging to the other vertebrate opsin classes. The mutant opsins are tested for their ability to constitutively activate bovine transducin. We demonstrate that mutations disrupting this key salt bridge produce constitutive activation in all classes. However, the mutant opsins differ in their ability to be quenched in the dark state by the addition of chromophore as well as in their level of constitutive activation. The differences in constitutive activation profiles suggest that structural differences exist among the opsin classes that may translate into a difference in activation properties.  相似文献   

16.
We have shown previously that phosphoinositide 3-kinase in the retina is activated in vivo through light-induced tyrosine phosphorylation of the insulin receptor (IR). The light effect is localized to photoreceptor neurons and is independent of insulin secretion (Rajala, R. V., McClellan, M. E., Ash, J. D., and Anderson, R. E. (2002) J. Biol. Chem. 277, 43319-43326). These results suggest that there exists a cross-talk between phototransduction and other signal transduction pathways. In this study, we examined the stage of phototransduction that is coupled to the activation of the IR. We studied IR phosphorylation in mice lacking the rod-specific alpha-subunit of transducin to determine if phototransduction events are required for IR activation. To confirm that light-induced tyrosine phosphorylation of the IR is signaled through bleachable rhodopsin, we examined IR activation in retinas from RPE65(-/-) mice that are deficient in opsin chromophore. We observed that IR phosphorylation requires the photobleaching of rhodopsin but not transducin signaling. To determine whether the light-dependent activation of IR is mediated through the rod or cone transduction pathway, we studied the IR activation in mice lacking opsin, a mouse model of pure cone function. No light-dependent activation of the IR was found in the retinas of these mice. We provide evidence for the existence of a light-mediated IR pathway in the retina that is different from the known insulin-mediated pathway in nonneuronal tissues. These results suggest that IR phosphorylation in rod photoreceptors is signaled through the G-protein-coupled receptor rhodopsin. This is the first study demonstrating that rhodopsin can initiate signaling pathway(s) in addition to its classical phototransduction.  相似文献   

17.
R D Calhoon  R R Rando 《Biochemistry》1985,24(12):3029-3034
The stoichiometry of the reaction between [14C]-9-cis-retinoyl fluoride, a close isostere of 9-cis-retinal, and bovine opsin and the biochemical and spectral properties of this new pigment were investigated. The stoichiometry of retinoid incorporation is approximately one in dodecyl maltoside, a detergent in which opsin is capable of regeneration with 11-cis-retinal. Interestingly, in Ammonyx LO, a detergent that does not permit rhodopsin regeneration, the stoichiometry of binding is still approximately one. By contrast, heat-denatured opsin does not irreversibly bind substantial [14C]retinoyl fluoride. This result strongly suggests that the nucleophilicity of the active site lysine is retained in Ammonyx LO but that further conformational changes in the protein, required to form rhodopsin, are not possible. These results are all consistent with an active site directed mechanism for the irreversible reaction of 9-cis-retinoyl fluoride with opsin probably at the active site lysine residue. The ultraviolet spectra of 9-cis-retinoylopsin and its all-trans congener show gamma max's at 373 and 380 nm, respectively, somewhat bathochromically shifted from their respective model N-butylretinamides which absorb at 347 and 351 nm. Photolysis of both 9-cis- and all-trans-retinoylopsins leads to the same photostationary state. This shows that, as expected, photoisomerization without bleaching occurs. The photolysis of either 9-cis- or all-trans-retinoylopsin in the presence of the G protein (transducin) does not lead to the activation of the latter. This is consistent with the notion that a protonated Schiff base is critical for the function of rhodopsin.  相似文献   

18.
In the presence of guanyl nucleotides and rhodopsin-containing retinal rod outer segment membranes, transducin stimulates the light-sensitive cyclic nucleotide phosphodiesterase 5.5-7 times. The activation constant (Ka) for GTP and Gpp(NH)p is 0.25 microM, that for GDP and GDP beta S is 14 and 110 microM, respectively. GDP purified from other nucleotide contaminations at concentrations up to 1 mM does not stimulate phosphodiesterase but binds to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The mode of transducin interaction with bleached rhodopsin also depends on the nature of the bound guanyl nucleotide: in the presence of GDP rhodopsin-containing membranes bind 70-100% of transducin, whereas in the presence of Gpp(NH)p the membranes bind only 13% of the protein. The experimental results suggest that GDP and GTP convert transducin into two different functional states, i.e., the transducin X GTP complex binds to phosphodiesterase causing its stimulation, while the transducin X GDP complex is predominantly bound to rhodopsin.  相似文献   

19.
Rhodopsin is the rod photoreceptor G protein-coupled receptor responsible for capturing light. Mutations in the gene encoding this protein can lead to a blinding disease called retinitis pigmentosa, which is inherited frequently in an autosomal dominant manner. The E150K opsin mutant associated with rarely occurring autosomal recessive retinitis pigmentosa localizes to trans-Golgi network membranes rather than to plasma membranes of rod photoreceptor cells. We investigated the molecular mechanisms underlying opsin retention in the Golgi apparatus. Electrostatic calculations reveal that the E150K mutant features an overall accumulation of positive charges between helices H-IV and H-II. Human E150K and several other closely related opsin mutants were then expressed in HEK-293 cells. Spectral characteristics and functional biochemistry of each mutant were analyzed after reconstitution with the cis-retinoid chromophore. UV-visible spectra and rhodopsin/transducin activation assays revealed only minor differences between the purified wild type control and rhodopsin mutants. However, partial restoration of the surface electrostatic charge in the compensatory R69E/E150K double mutant rescues the plasma membrane localization of opsin. These findings emphasize the fundamental importance of electrostatic interactions for appropriate membrane trafficking of opsin and advance our understanding of the pathophysiology of autosomal recessive retinitis pigmentosa due to the E150K mutation.  相似文献   

20.
Visual signal transduction serves as one of the best understood G protein-coupled receptor signaling systems. Signaling is initiated when a photon strikes rhodopsin (Rho) causing a conformational change leading to productive interaction of this G protein-coupled receptor with the heterotrimeric G protein, transducin (Gt). Here we describe a new method for Gt purification from native bovine rod photoreceptor membranes without subunit dissociation caused by exposure to photoactivated rhodopsin (Rho*). Native electrophoresis followed by immunoblotting revealed that Gt purified by this method formed more stable heterotrimers and interacted more efficiently with membranes containing Rho* or its target, phosphodiesterase 6, than did Gt purified by a traditional method involving subunit dissociation and reconstitution in solution without membranes. Because these differences could result from selective extraction, we characterized the type and amount of posttranslational modifications on both purified native and reconstituted Gt preparations. Similar N-terminal acylation of the Gtalpha subunit was observed for both proteins as was farnesylation and methylation of the terminal Gtgamma subunit Cys residue. However, hydrogen/deuterium exchange experiments revealed less incorporation of deuterium into the Gtalpha and Gtbeta subunits of native Gt as compared to reconstituted Gt. These findings may indicate differences in conformation and heterotrimer complex formation between the two preparations or altered stability of the reconstituted Gt that assembles differently than the native protein. Therefore, Gt extracted and purified without subunit dissociation appears to be more appropriate for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号