首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
西藏野生大麦染色体N带带型的图象纹理自动分析   总被引:2,自引:2,他引:0  
应用图象自动分析和纹理识别的原理,建立了染色体带型自动分析软件系统对西藏野竹黑稃大麦带带型进行了计算机自动分析,准确,快速地获得染色体的带型图和带型模式图。  相似文献   

3.
Simultaneous Q- and R-type banding patterns in human chromosomes have been achieved by staining with chromomycin A3. Some peculiarities of these patterns as compared to the patterns induced by other fluorochromes are described. The resolution power of this technique in analyzing structural rearrangements of human chromosomes is discussed.  相似文献   

4.
Denaturing gradient gel electrophoresis (DGGE) was applied to the 16S-23S rRNA intergenic spacer region (ISR) as a means to evaluate strain level differences in Escherichia coli. The ISRs of 81 environmental E. coli isolates obtained from bovine, poultry, and human sources yielded a total of 41 unique DGGE banding patterns, with identical patterns and common bands within each source and no overlapping patterns among sources. An additional 51 isolates from two nearby streams yielded 45 unique banding patterns with no overlap between sites. However, two of the isolates from the streams had identical banding patterns to those from two of the source isolates, resulting in a total of 84 unique DGGE banding patterns out of 132 isolates identified in this study. These results revealed high diversity among environmental E. coli isolates, which made it difficult to unambiguously ascribe strains found in water samples to specific host organisms.  相似文献   

5.
Synchronized human lymphocytes were exposed to 5-bromo-2-deoxyuridine (BrdUrd) for incorporation in either G-or R-bands. The substituted bands were revealed by monoclonal anti-BrdUrd antibodies disclosed with either gold-labeled antibodies or with the protein A-gold complex. Sharp G-or R-banding, specific for electron microscopy (EM), was obtained. These banding patterns, referred to as GB-AAu (G-bands by BrdUrd using Antibodies and gold [Au]) and RB-AAu (R-bands by BrdUrd using Antibodies and gold [Au]), resemble dynamic band patterns (GBG and RBG) much more than they do morphologic band patterns (GTG and RHG). The G- and R- band patterns allow accurate chromosome identification and karyotyping. An actual karyotype of human GB-AAu-banded chromosomes at the 750 band level, photographed in the EM, is presented. The method produces excellent band separation and band contrast. Variations in band staining intensities were noted and correlated with BrdUrd enrichment. The C-band regions were positively stained after GB-AAu banding while they were negatively stained after RB-AAu banding. Telomeres appeared heterogeneous after GB-AAu banding suggesting that part of the telomeric bands might be late replicating.  相似文献   

6.
An example is given which illustrates the capacity of the ASG banding technique for the solution of complex radiation-induced structural changes such as those found surviving in human skin cells after radiotherapy. — With the aid of a G-band numbering system developed for such analyses, a detailed comparison has been made of banding patterns obtained and published by other authors.  相似文献   

7.
The establishment of human chromosomal regions as distinct and characteristic domains has been demonstrated by the reproducible banding patterns observed on metaphase chromosomes as a result of various staining techniques. Although the exact molecular properties responsible for the patterns are not well understood, a general correlation has been established between the time of replication of a particular region of DNA and its banding characteristics. Using a replication timing assay based on fluorescence in situ hybridization patterns, we investigated replication timing properties across chromosomal regions with potentially distinct chromatin properties. Relative replication timing values were determined using cosmid DNA probes around the pseudoautosomal region boundary in Xp22.3 and the cytogenetic band boundary regions surrounding Xp22.2. Although we observed replication timing domains that were generally consistent with cytogenetic banding patterns, we did not find sharp replication timing boundaries at either the pseudoautosomal region boundary or at the cytogenetic band boundaries. Received: 6 September 1997; in revised form: 16 December 1997 / Accepted: 5 January 1998  相似文献   

8.
Human lymphocytes were cultured in vitro and treated with calyculin A. The aim of this work was to estimate the influence of calyculin A on chromosome morphology and banding patterns. It was also interesting whether calyculin A treatment is useful in cytogenetic analysis of human karyotype. We proved that calyculin A induces chromosome condensation in lymphocytes and raises the mitotic index significantly. Moreover, calyculin A does not influence the banding patterns. Therefore it is concluded that calyculin A can be clinically useful for human karyotyping.  相似文献   

9.
This study investigates whether there is a predominant Staphylococcus aureus strain in retail foods and healthy human hands, and examines the relationship between pulsed-field gel electrophoresis (PFGE) banding patterns and the S. aureus characteristics of staphylococcal enterotoxin (SE) type, coagulase type, and β-lactamase activity. Ninety-four strains of S. aureus isolated from retail foods and healthy human hands were analyzed by PFGE. Several strains isolated from the same shop or a chain store showed identical patterns, indicating that the origins of these strains were identical. After excluding these strains showing identical patterns, 54 strains were used for the PFGE analysis. No spread of a particular clone in the environment surrounding the food was apparent. The PFGE analysis of these 54 strains was classified in 6 lineages (L1-L6). There was no relationship between the PFGE banding pattern and coagulase type or SE type. Eleven (84.6%) of the 13 isolates in PFGE banding pattern L5 did not produce β-lactamase, suggesting that the production of β-lactamase influenced a specific PFGE banding pattern.  相似文献   

10.
We have developed a method that identifies human chromosomes in human x hamster somatic cell hybrids and simultaneously bands these same metaphases. Other methods generally require separate slides for banding and detection of human chromosome material, making the precise characterization of human material difficult. Our procedure involves denaturing metaphase chromosomes, followed by in situ hybridization of biotinylated whole human DNA. Fluoresceinated avidin is then bound to the biotinylated DNA, staining the human chromosomes yellow-green when excited with UV light. Chromosome banding is achieved by staining the slides with DAPI and actinomycin D. The fluorescein and DAPI excite maximally at 488 and 355 nm and emit at 520 and 450 nm, respectively. This permits identification of the human material at one excitation wavelength and visualization of the banding patterns at another wavelength. With this procedure, we have successfully identified both intact and broken human chromosomes, as well as human material involved in human x hamster translocations. The results indicate that this procedure is more accurate and considerably more rapid than previous methods and can be routinely employed for the cytogenetic analysis of human x rodent hybrids.  相似文献   

11.
应用涂染技术研究人和猕猴染色体的同源性   总被引:2,自引:0,他引:2  
黄浩杰  余龙 《动物学报》1998,44(4):458-465
用24种人类染色体探针对人和猕猴G-显带染色体进行涂染。结果显示:人类所有染色体在猕猴的染色体组里都有其同源染色体或染色体片段。  相似文献   

12.
A karyotype of the gibbon, Hylobates, has been prepared based on the chromosome banding patterns produced by quinacrine, trypsin-Giemsa, and centromeric heterochromatin stains. The banding patterns of H. lar and H. moloch are virtually identical. No brilliant quinacrine-fluorescent areas are present. The banding pattern of most of the gibbon chromosomes show less resemblance to those of the human, chimpanzee, gorilla, or orangutan than the chromosomes of the higher primates do to each other, suggesting a relatively large evolutionary separation of the gibbon from the higher primates. A pericentric inversion of chromosome 7 is present in one gibbon.  相似文献   

13.
Prophase chromosome unique band sequences: definition and utilization   总被引:1,自引:0,他引:1  
Extensive experience with the analysis of human prophase chromosomes and studies into the complexity of prophase banding patterns have suggested that at least some prophase chromosomal segments can be accurately identified and characterized independently of the morphology of the chromosome as a whole. The feasibility of identifying and analyzing specified prophase chromosome segments was thus investigated as an alternative approach to prophase chromosome analysis based on whole-chromosome recognition. Through the use of prophase idiograms at the 850-band stage (Francke, 1981) and a systematic comparison system, we have demonstrated that it is possible to divide the 24 human prophase idiograms into a set of 94 unique band sequences, each of which has a banding pattern that is recognizable and distinct from any other nonhomologous chromosome portion. The use of a unique band sequence approach in prophase chromosome analysis is expected to increase efficiency and sensitivity through more effective use of available banding information.  相似文献   

14.
Summary We have described a characteristic substructure of mitotic chromosomes, the chromosomal unit fibre, with lengths about five times the length of the corresponding metaphase chromosomes and a uniform diameter of 0.4 m. In order to study the relationship of chromosome banding to chromosome compaction, methods have been devised to obtain banding patterns on chromosomal unit fibres, similar to G-band patterns of intact mitotic chromosomes. The total number of bands plus interbands per haploid human karyotype is estimated at about 3000. The banding pattern of chromosomal unit fibres indicates a certain resemblance to the normal G-banding pattern of human chromosomes even if the details indicate a short-range random distribution.  相似文献   

15.
Summary The pattern of banding induced by five restriction enzymes in the chromosome complement of chimpanzee, gorilla, and orangutan is described and compared with that of humans. The G banding pattern induced by Hae III was the only feature common to the four species. Although hominid species show almost complete chromosomal homology, the restriction enzyme C banding pattern differed among the species studied. Hinf I did not induce banding in chimpanzee chromosomes, and Rsa I did not elicit banding in chimpanzee and orangutan chromosomes. Equivalent amounts of similar satellite DNA fractions located in homologous chromosomes from different species or in nonhomologous chromosomes from the same species showed different banding patterns with identical restriction enzymes. The great variability in frequency of restriction sites observed between homologous chromosome regions may have resulted from the divergence of primordial sequences changing the frequency of restriction sites for each species and for each chromosomal pair. A total of 30 patterns of banding were found informative for analysis of the hominid geneaalogical tree. Using the principle of maximum parsimony, our data support a branching order in which the chimpanzee is more closely related to the gorilla than to the human.  相似文献   

16.
Some of the techniques used to obtain banding patterns in human karyotype are adapted here to three pig kidney cell strains (PK15, F and RP). These strains were established respectively in 1955, 1962 and 1969. The banding techniques used are: controlled heating, ASG technique, alkaline treatment and proteolytic digestion with trypsin or pronase. Knowing the specific banding of the pig karyotype, it has been possible to study the chromosomal rearrangements observed in the heteroploid cell strains. If the strain is old, the rearrangements are more numerous. However, they are the same as the ones usually described: in the three strains, one of the two chromosomes of each pair is retained unchanged as judged by its banding. The other chromosome is either present, lost or modified. It may constitute part of a marker chromosome.  相似文献   

17.
Counterstain-enhanced chromosome banding   总被引:10,自引:3,他引:7  
Summary Chromosome staining, in which at least one member of a pair or triplet of DNA binding dyes is fluoescent whereas the others act as counterstain, is reviewed. Appropriately chosen combinations of fluorescent dyes and counterstains can be employed to enhance general chromosome banding patterns, or to induce specific regional banding patterns. Some pairs of dyes which exhibit complementary DNA binding specificity, A-T/G-C or G-C/A-T, provide enhanced definition of positive or reverse banding patterns. Dye combinations of the type A-T/A-T, that include two DNA stains with similar specificity but non-identical binding modes, produce a specific pattern of brightly fluorescnet heterochromatic regions (DA-DAPI bands). In man, the method highlights the C bands of chromosomes 1, 9, 15, 16, and the Y. Certain dye triplets of the type G-C/A-T/A-T, which include two spectroscopically separated fluorescent stains with reciprocal DNA base pair binding specificites and a non-fluorescent A-T binding counterstain, can be used to highlight selectively, in the appropriate wavelength ranges, either R bands or DA-DAPI bands.Applications of these techniques in human cytogenetics are described. The potential of the new methodology for detecting and analysing specific chromosome bands is demonstrated. The mechanisms responsible for contrast enhancement and pattern induction are reviewed and their implications for chromosome structure are discussed as they relate to the banding phenomenon and to the DNA composition of chromosomes.  相似文献   

18.
Summary A high-resolution replication banding technique, dynamic GBG banding (G-bands after 5-bromodeoxyuridine [BrdUrd] and Giemsa), showed that, at a resolution of 850 bands/genome, GBG banding and GTG banding (G-bands after trypsin and Giemsa) produce almost identical patterns. RBG band (R-bands after BrdUrd and Giemsa) and RHG band (R-bands after heat denaturation and Giemsa) patterns were previously shown to be only 75%–85% coincident; thus GTG banding more accurately reflects replication patterns than does RHG banding. BrdUrd synchronization uses high concentrations of BrdUrd both to substitute early replicating DNA and to arrest cells before the late bands replicate. Release from the block is via a low thymidine concentration. The banding is revealed by the fluorochrome-photolysis-Giemsa (FPG) technique and produces the GBG banding that includes concomitant staining of constitutive heterochromatin. As opposed to other replication G-banding procedures, BrdUrd synchronization and GBG banding produces a reproducible replication band pattern. The discordance between homologs after GBG banding is similar to that after GTG banding and no lateral asymmetry of the constitutive heterochromatin has been observed. Also, BrdUrd synchronization neither significantly depresses the mitotic index, nor induces chromosome breaks. Thus, GBG banding seems as clinically useful as GTG banding and provides important information regarding replication time.  相似文献   

19.
In the present study unstimulated and stimulated human blood monocytes, untreated and phorbol ester treated U-937 cells, as well as human peritoneal and alveolar macrophages were studied with respect to their surface membrane properties. Binding of different lectins and electrophoretic patterns of tritium labeled surface glycoproteins were compared. The analysis of surface glycoproteins could be interpreted as evidence for a common origin of the analysed cell populations. Furthermore, banding patterns of glycoproteins might be useful to define certain activation states within monocyte/macrophage differentiation. In contrast, lectin binding pattern did not clearly discriminate macrophage subpopulations.  相似文献   

20.
A new technique to reveal the banding pattern of human chromosomes is described. Slides prepared by the routine air drying technique were treated with urea-Sörensen buffer solution for ten minutes at pH 6.8 at 37° C. Individual pairs of all human chromosomes exhibited a characteristic banding pattern by this technique, and by its use the karyotypes were analysed. With the exception of some minor differences the banding patterns obtained by the present technique appeared to be identical with those obtained by the Giemsa staining and quinacrine fluorescence methods carried out by previous workers.Contribution No. 877 from the National Institute of Genetics, Japan. Supported by grant-in-aid No. 92332 from the Ministry of Education of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号