首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several recent studies have examined human evolution with reference either to the symmetry of Acheulean tools or brain structure but although these investigations have been informative they have not generally taken into account the psychology of perception in relation to recent insights into neural pathways of the visual brain. Similarly, the interest in symmetry has largely been restricted to understanding tool morphology that has ignored research on how this property might be processed by the brain that could help provide new insights into cognitive evolution. The purpose of this paper is therefore to bring these diverse approaches together in an effort to assimilate the various findings so that a fuller understanding of the cognitive profile of hominins during the early to Middle Pleistocene can be achieved.  相似文献   

2.
To fully understand the evolutionary history of parasitic kinetoplastids and to understand the context within which the evolution of each parasite group has developed, an understanding not just of the parasites, but of all kinetoplastids is required. Accordingly, this paper provides an overview of kinetoplastid evolution and systematics, including coverage of the proposal by Moreira et al. (2004) to divide kinetoplasts into Prokinetoplastina (Ichthyobodo and Perkinsiella) and Metakinetoplastina (other bodonids and trypanosomatids). The implications of such a revision, with regard to correctly identifying outgroup taxa for studies of evolution within taxa of medical importance, are addressed, together with a more detailed review of the evolution and origins of the trypanosomes in the light of new phylogenies, new approaches and revisions in kinetoplastid systematics.  相似文献   

3.
The study of hominin brain evolution focuses on the interiors of fossilized braincases. Applications of recent three-dimensional computed tomography (CT) and magnetic resonance imaging (MRI) techniques for visualizing and measuring >virtual endocasts< from braincases in combination with advances in computer graphics and software for acquiring relevant data are transforming the way in which fossil skulls are analyzed, and improving the quality of paleoneurological investigations. Although CT imaging is preferred for fossil skulls, a novel method that combines high-resolution MRI of physical endocasts, electronic reconstruction of their missing parts, and warping of the resulting virtual endocasts is currently being developed and has great potential for future studies of hominin brain evolution. Applications of CT and MR techniques have already resulted in surprising new findings, which are briefly outlined. Exciting revelations about hominin brain evolution are expected as the 21st century unfolds.  相似文献   

4.
Abstract

Recent studies on the neurotransmitter organization of the basal ganglia and forebrain in lower vertebrates suggest that, in contrast to the old concepts of the phylogeny of the brain, there are many similarities between the chemical organization of the brain throughout evolution. By examining neurotransmitter receptors using in vitro autoradiography we have attempted to further our understanding of the evolution of the brain. Receptors enriched in different parts of the basal ganglia in mammals appear to be also enriched in the homologous areas in lower vertebrates. Thus, for example, dopamine and muscarinic receptors, but not serotonin-1A, are enriched in the paleostriatum augmentatum while GABA/benzo-diazepine receptors are enriched in the paleostriatum primitivum corresponding with their localization to the caudate-putamen and globus pallidus respectively. Our results support the concept of a more conservative evolution of the vertebrate brain and demonstrate the usefulness of receptor autoradiography in the understanding of brain evolution.  相似文献   

5.
Most biomedical neuroscientists realize the importance of the study of brain evolution to help them understand the differences and similarities between their animal model of choice and the human brains in which they are ultimately interested. Many think of evolution as a linear process, going from simpler brains, as those of rats, to more complex ones, as those of humans. However, in reality, every extant species' brain has undergone as long a period of evolution as has the human brain, and each brain has its own species-specific adaptations. By understanding the variety of existing brain types, we can more accurately reconstruct the brains of common ancestors, and understand which brain traits (of humans as well as other species) are derived and which are ancestral. This understanding also allows us to identify convergently evolved traits, which are crucial in formulating hypotheses about structure-function relationships in the brain. A thorough understanding of the processes and patterns of brain evolution is essential to generalizing findings from 'model species' to humans, which is the backbone of modern biomedical science.  相似文献   

6.
Crassulaceae is a mid-sized family of angiosperms, most species of which are herbaceous succulents, usually with 5-merous flowers and one or two whorls of stamens. Although previous phylogenetic studies revealed seven major “clades” in Crassulaceae and greatly improved our understanding of the evolutionary history of the family, relationships among major clades are still contentious. In addition, the biogeographic origin and evolution of important morphological characters delimiting infrafamilial taxa have not been subject to formal biogeographic and character evolution analyses based on a well-supported phylogeny backbone. In this study, we used plastomic data of 52 species, representing all major clades revealed in previous studies to reconstruct a robust phylogeny of Crassulaceae, based on which we unraveled the spatiotemporal framework of diversification of the family. We found that the family may originate in southern Africa and then dispersed to the Mediterranean, from there to eastern Asia, Macaronesia, and North America. The crown age of Crassulaceae was dated at ca. 63.93 million years ago, shortly after the Cretaceous–Paleogene (K-Pg) boundary. We also traced the evolution of six important morphological characters previously used to delimit infrafamilial taxa and demonstrated widespread parallel and convergent evolution of both vegetative (life form and phyllotaxis) and floral characters (number of stamen whorls, petals free or fused, and flower merism). Our results provide a robust backbone phylogeny as a foundation for further investigations, and also some important new insights into biogeography and evolution of the family Crassulaceae.  相似文献   

7.
Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.  相似文献   

8.
Kutikova  L. A.  Markevich  G. I. 《Hydrobiologia》1993,255(1):545-549
Phylogenetic relations among the main groups of Monimotrochida are considered. The principal directions of monimotrochid evolution were defined by comparative investigations of mastax morphology (SEM), basic body structures, and general biology. On the basis of these results we propose a revision of previous rotifer taxonomy. We suggest to place the Monimotrochida in the order Protoramida divided into two suborders Flosculariina and Conochilina.  相似文献   

9.
Here we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions. The stainings revealed that the neuroarchitecture of the arcuate body is characterized by several distinct layers some of which comprise nerve terminals that are organized in columnar, palisade-like arrays. The anatomy of the spider's arcuate body exhibits similarities as well as differences when compared to the central complex in the protocerebrum of the Tetraconata. Arguments for and against a possible homology of the arcuate body of the Chelicerata and the central complex of the Tetraconata and their consequences for the understanding of arthropod brain evolution are discussed.  相似文献   

10.
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the “behavior” of fire may be a synapomorphic trait characterizing the human‐chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Current understanding of life‐history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non‐stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics.  相似文献   

13.
The basicranium is the keystone of the primate skull, and understanding its morphological interdependence on surrounding soft-tissue structures, such as the brain, can reveal important mechanisms of skull development and evolution. In particular, several extensive investigations have shown that, across extant adult primates, the degree of basicranial flexion and petrous orientation are closely linked to increases in brain size relative to cranial base length. The aim of this study was to determine if an equivalent link exists during prenatal life. Specific hypotheses tested included the idea that increases in relative endocranial size (IRE5), relative infratentorial size (RIE), and differential encephalization (IDE) determine the degree of basicranial flexion and coronal petrous reorientation during non-hominoid primate fetal development. Cross-sectional fetal samples of Alouatta caraya (n=17) and Macaca nemestrina (n=24) were imaged using high-resolution magnetic resonance imaging (hrMRI). Cranial base angles (CBA), petrous orientations (IPA), base lengths, and endocranial volumes were measured from the images. Findings for both samples showed retroflexion, or flattening, of the cranial base and coronal petrous reorientation as well as considerable increases in absolute and relative brain sizes. Although significant correlations of both IRE5 and RIE were observed against CBA and IPA, the correlation with CBA was in the opposite direction to that predicted by the hypotheses. Variations of IDE were not significantly correlated with either angle. Correlations of IPA with IRE5 and RIE appeared to support the hypotheses. However, partial coefficients computed for all significant correlations indicated that changes to the fetal non-hominoid primate cranial base were more closely related to increases in body size than the hypothesized influence of relative brain enlargement. These findings were discussed together with those from a previous study of modern human fetuses.  相似文献   

14.
Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe—the most complete plesiadapoid cranium known—shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.  相似文献   

15.
This paper assesses selective pressures that shaped primate life histories, with particular attention to the evolution of longer juvenile periods and increased brain sizes. We evaluate the effects of social complexity (as indexed by group size) and foraging complexity (as indexed by percent fruit and seeds in the diet) on the length of the juvenile period, brain size, and brain ratios (neocortex and executive brain ratios) while controlling for positive covariance among body size, life span, and home range. Results support strong components of diet, life span, and population density acting on juvenile periods and of home range acting on relative brain sizes. Social-complexity arguments for the evolution of primate intelligence are compelling given strong positive correlations between brain ratios and group size while controlling for potential confounding variables. We conclude that both social and ecological components acting at variable intensities in different primate clades are important for understanding variation in primate life histories.  相似文献   

16.
Jianping Xu 《Génome》2004,47(5):775-780
The origin of sex and how sex is maintained are among the biggest puzzles in biology. Most investigations into this problem have focused on complex eukaryotes like animals and plants. This mini-review summarizes recent progress in our understanding of the evolution of sex, highlighting results from studies of experimental and natural populations of microorganisms. Increasing evidence indicates that sexual reproduction in natural populations of viruses, bacteria, and eukaryotic microbes is much more prevalent than previously thought. In addition, investigations using experimental microbial populations are providing important parameters relevant to our understanding of the origin and maintenance of sex. It is argued that microbes are excellent model organisms to explore the mechanisms responsible for the evolution of sex.  相似文献   

17.
Vertebrate developmental biologists typically rely on a limited number of model organisms to understand the evolutionary bases of morphological change. Unfortunately, a typical model system for squamates (lizards and snakes) has not yet been developed leaving many fundamental questions about morphological evolution unaddressed. New model systems would ideally include clades, rather than single species, that are amenable to both laboratory studies of development and field-based analyses of ecology and evolution. Combining an understanding of development with an understanding of ecology and evolution within and between closely related species has the potential to create a seamless understanding of how genetic variation underlies ecologically and evolutionarily relevant variation within populations and between species. Here we briefly introduce a new model system for the integration of development, evolution, and ecology, the lizard genus Anolis, a diverse group of lizards whose ecology and evolution is well understood, and whose genome has recently been sequenced. We present a developmental staging series for Anolis lizards that can act as a baseline for later comparative and experimental studies within this genus.  相似文献   

18.
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder. It is characterized by two principal features, microcephaly present at birth and nonprogressive mental retardation. The microcephaly is the consequence of a small but architecturally normal brain, and it is the cerebral cortex that shows the greatest size reduction. There are at least seven MCPH loci, and four of the genes have been identified: MCPH1, encoding Microcephalin; MCPH3, encoding CDK5RAP2; MCPH5, encoding ASPM; and MCPH6, encoding CENPJ. These findings are starting to have an impact on the clinical management of families affected with MCPH. Present data suggest that MCPH is the consequence of deficient neurogenesis within the neurogenic epithelium. Evolutionary interest in MCPH has been sparked by the suggestion that changes in the MCPH genes might also be responsible for the increase in brain size during human evolution. Indeed, evolutionary analyses of Microcephalin and ASPM reveal evidence for positive selection during human and great ape evolution. So an understanding of this rare genetic disorder may offer us significant insights into neurogenic mitosis and the evolution of the most striking differences between us and our closest living relatives: brain size and cognitive ability.  相似文献   

19.
The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.  相似文献   

20.
The modeling relation and models of complex systems expressed by non-integrable constraints were developed during ca. 1970-1987, when I worked most closely with Robert Rosen. I contrast the modeling relation within the organism itself as a necessary condition for life and evolution, as Rosen developed it in his fundamental work 'Anticipatory Systems', with the modeling relation within our brain as a necessary condition for understanding life, as Rosen developed it in 'Life Itself'. Our approaches to the modeling relation were complementary. Rosen focused on the formal relational conditions necessary for life, and on the limitations that formal mathematical-symbol systems impose on our models. I focused on the physical conditions necessary for these abstract relations to be realized, and on the symbolic control in organisms that allows open-ended evolution. I contrast Rosen's views on physics and evolution in 'Anticipatory Systems' and later papers with his views in 'Life Itself', and I speculate on why they differ so greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号