首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
The cells of L. mesenteroides KIBGE HA1 were immobilized for the production of dextran on acrylamide gel and gel concentration was optimized for maximum entrapment. Sucrose at substrate concentration of 10% produced high yield of dextran at 25°C with a percent conversion of 5.82 while at 35°C it was 3.5. However, increasing levels of sucrose diminished dextran yields. The free cells stopped producing dextran after 144 h, while immobilized cells continued to produce dextran even after 480 h. Molecular mass distribution of dextran from free cells indicate that it is identical to that of blue dextran while the molecular mass of dextran from immobilized cells is lower than that of free cells.  相似文献   

2.
Maximal dextran production (54-55 g/l) by the bacterium Leuconostoc mesenteroides strain V-2317D was observed in molasses-containing media in the presence of 17.5% glucose at pHinit 6.75. The beginning of dextran production depended on the amount of inoculate; maximum yield was observed at a shaker rate of 200 rpm. The dextran produced by L. mesenteroides grown in the molasses-containing medium was representative of three fractions differing in the molecular weight and composition: the high- (approximately 54.5%), medium- (approximately 27.9%), and low-molecular-weight (approximately 2.85%) fractions.  相似文献   

3.
Dextrans are the main exopolysaccharides produced by Leuconostoc species. Other dextran-producing lactic acid bacteria include Streptococci, Lactobacilli, and Weissella species. Commercial production and structural analysis has focused mainly on dextrans from Leuconostoc species, particularly on Leuconostoc mesenteroides strains. In this study, we used NMR spectroscopy techniques to analyze the structures of dextrans produced by Leuconostoc citreum E497 and Weissella confusa E392. The dextrans were compared to that of L. mesenteroides B512F produced under the same conditions. Generally, W. confusa E392 showed better growth and produced more EPS than did L. citreum E497 and L. mesenteroides B512F. Both L. citreum E497 and W. confusa E392 produced a class 1 dextran. Dextran from L. citreum E497 contained about 11% alpha-(1-->2) and about 3.5% alpha-(1-->3)-linked branches whereas dextran from W. confusa E392 was linear with only a few (2.7%) alpha-(1-->3)-linked branches. Dextran from W. confusa E392 was found to be more linear than that of L. mesenteroides B512F, which, according to the present study, contained about 4.1% alpha-(1-->3)-linked branches. Functionality, whether physiological or technological, depends on the structure of the polysaccharide. Dextran from L. citreum E497 may be useful as a source of prebiotic gluco-oligosaccharides with alpha-(1-->2)-linked branches, whereas W. confusa E392 could be a suitable alternative to widely used L. mesenteroides B512F in the production of linear dextran.  相似文献   

4.
A gene, dsrT, encoding a dextransucrase-like protein was isolated from the genomic DNA libraries of Leuconostoc mesenteroides NRRL B-512F dextransucrase-like gene. The gene was similar to the intact open reading frames of the dextransucrase gene dsrS of L. mesenteroides NRRL B-512F, dextransucrase genes of strain NRRL B-1299 and streptococcal glucosyltransferase genes, but was truncated after the catalytic domain, apparently by the deletion of five nucleotides. dsrT mRNA was produced in this strain L. mesenteroides when cells were grown in a sucrose medum, but at a level of 20% of that of dsrS mRNA. The molecular weight of the dsrT gene product was 150,000 by SDS-PAGE. The product did not synthesize dextran, but had weak sucrose cleaving activity. The insertion of five nucleotides at the putative deletion point in dsrT resulted in an enzyme with a molecular weight of 210,000 and with dextransucrase activity.  相似文献   

5.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

6.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

7.
When grown in glucose or fructose medium in the absence of sucrose, Leuconostoc mesenteroides NRRL B-1299 produces two distinct extracellular dextransucrases named glucose glucosyltransferase (GGT) and fructose glucosyltransferase (FGT). The production level of GGT and FGT is 10 to 20 times lower than that of the extracellular dextransucrase sucrose glucosyltransferase (SGT) produced on sucrose medium (traditional culture conditions). GGT and FGT were concentrated by ultrafiltration before sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Their molecular masses were 183 and 186 kDa, respectively, differing from the 195 kDa of SGT. The structural analysis of the dextran produced from sucrose and of the oligosaccharides synthesized by acceptor reaction in the presence of maltose showed that GGT and FGT are two different enzymes not previously described for this strain. The polymer synthesized by GGT contains 30% alpha(1-->2) linkages, while FGT catalyzes the synthesis of a linear dextran only composed of alpha(1-->6) linkages.  相似文献   

8.
Kim D  Robyt JF  Lee SY  Lee JH  Kim YM 《Carbohydrate research》2003,338(11):1183-1189
Reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase with increasing concentrations of sucrose, from 0.1 to 4.0 M, gave a decreasing amount of high-molecular weight dextran (HMWD) (>10(6) Da) with a concomitant increase in low-molecular weight dextran (LMWD) (<10(5) Da). At 0.1 M sucrose, pH 5.5, and 28 degrees C, 99.8% of the dextran had a MW>10(6) Da and at 4.0 M sucrose, 69.9% had a MW<10(5) Da and 30.1% had a MW>10(6) Da, giving a bimodal distribution. The degree of branching increased from 5% for 0.1 M sucrose to 16.6% for 4.0 M sucrose. The temperature had very little effect on the size of the dextran, which was >10(6) Da, but it had a significant effect on the degree of branching, which was 4.8% at 4 degrees C and increased to 14.7% at 45 degrees C. Both the molecular weight (MW) and the degree of branching were not significantly affected by different pH values between 4.5 and 6.0.  相似文献   

9.
A derepressed and partially constitutive mutant for dextranase of Lipomyces starkeyi was selected after ethyl methane sulphonate mutagenesis by zone clearance on blue dextran agar plates. The mutant produced dextranase when grown on glucose, fructose and sucrose as well as on dextran, and more enzyme was produced by the mutant than by the parental strain when grown on 1% dextran. The pH and temperature optima for the mutant dextranase were 5.5 and 55°C, respectively. Dextranase produced on sucrose produced more isomaltose and less glucose after dextran hydrolysis than the equivalent enzyme produced on dextran. The clinical size dextran (average mol. wt of 75000 ± 25000) yield of mixed culture fermentation with the mutant and Leuconostoc mesenteroides was 94% of the total dextran produced.  相似文献   

10.
Leuconostoc spp. (LSland LI1) isolated from sauerkraut and idli batter was selected for dextran production. To enhance the yield of dextran, effects of various parameters such as sucrose concentration, pH, temperature, incubation and inoculum percentage were analyzed. The optimum sucrose concentration for the Leuconostoc spp. (LS1 and LI1) was found to be 15% and 25% respectively. Isolates produced maximum dextran after 20 h of incubation at 29℃ and the optimum pH was found between 8 and 8.5. The inoculum concentration of 7.5% was more favorable for the production of dextran by Leuconostoc spp. (LS1 and LI1). The growth kinetic parameters were studied and compared for the strains LS1 and LI1. Mass production of dextran was carried out using a stirred tank batch reactor. FTIR analysis was done to determine the functional groups of dextran, sephadex is prepared by cross linking dextran using epichlorohydrin and the functional groups are determined by FTIR analysis.  相似文献   

11.
Bacterial profile modification (BPM) is being developed as an oil recovery technique that uses bacteria to selectively plug oil depleted zones within a reservoir to divert displacing fluids (typically water) into oil-rich zones. Leuconostoc mesenteroides, which produces dextran when supplied with sucrose, is a bacterium that is technically feasible for use in profile modification. However, the technique requires controlled bacterial growth to produce selective plugging.A kinetic model for the production of cells and polysaccharides has been developed for L. mesenteroides bacteria. This model, based on data from batch growth experiments, predicts saccharide utilization, cell generation, and dextran production. The underlying mechanism is the extracellular breakdown of sucrose into glucose and fructose and the subsequent production of polysaccharide (dextran). The monosaccharides are then available for growth. Accompanying sucrose consumption is the utilization of yeast extract. The cell requires a complex media that is provided by yeast extract as a source of vitamins and amino acids. Varying the concentration ratio of yeast extract to sucrose in the growth media provides a means of controlling the amount of polymer produced per cell. Consequently, in situ bacteria growth can be controlled by the manipulation of nutrient media composition, thereby providing the ability to create an overall strategy for the use of L. mesenteroides bacteria for profile modification.  相似文献   

12.
Glucan formation catalyzed by two GH-family 70 enzymes, Leuconostoc mesenteroides NRRL B-512F dextransucrase and L. mesenteroides NRRL B-1355 alternansucrase, was investigated by combining biochemical and kinetic characterization of the recombinant enzymes and their respective products. Using HPAEC analysis, we showed that two molecules act as initiator of polymerization: sucrose itself and glucose produced by hydrolysis, the latter being preferred when produced in sufficient amounts. Then, elongation occurs by transfer of the glucosyl residue coming from sucrose to the non-reducing end of initially formed products. Dextransucrase preferentially produces an isomaltooligosaccharide series, whose concentration is always low because of the high ability of these products to be elongated and form high molecular weight dextran. Compared with dextransucrase, alternansucrase has a broader specificity. It produces a myriad of oligosaccharides with various alpha-1,3 and/or alpha-1,6 links in early reaction stages. Only some of them are further elongated. Overall alternan polymer is smaller in size than dextran. In dextransucrase, the A repeats often found in C-terminal domain of GH family 70 were found to play a major role in efficient dextran elongation. Their truncation result in an enzyme much less efficient to catalyze high molecular weight polymer formation. It is thus proposed that, in dextransucrase, the A repeats define anchoring zones for the growing chains, favoring their elongation. Based on these results, a semi-processive mechanism involving only one active site and an elongation by the non-reducing end is proposed for the GH-family 70 glucansucrases.  相似文献   

13.
Multiple forms of dextransucrase (sucrose:1.6-alpha-D-glucan 6-alpha-D-glucosyltransferae EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F strain were shown by gel filtraton and electrophoretic analyses. Two components of enzyme, having different affinities for dextran gel, were separated by a column of Sephadex G-100. The major component voided from the Sephadex column was treated with dextranase and purified to an electrophoretically homogeneous state. The ]urified enzyme had a molecular weight of 64 000-65 000, pI value of 4.1, and 17% of carbohydrate in a molecule. EDTA showed a characteristic inhibition on the enzyme while stimulative effects were observed by the addition of exogenous dextran to the incubation mixture. The enzyme activity was stimulated by various dextrans and its Km value was decreased with increasing concentration of dextran. The purified enzyme showed no affinity for a Sephadex G-100 gel, and readily aggregated after the preservation at 4 degrees C in a concentrated solution.  相似文献   

14.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

15.
Various dextransucrase molecular mass forms found in enzyme preparations may sometimes be products of proteolytic activity. Extracellular protease in Leuconostoc mesenteroides strains NRRL B-512F and B-512FMC dextransucrase preparations was identified. Protease had a molecular mass of 30 kDa and was the predominant form derived from a high molecular mass precursor. The production and activity of protease in culture medium was strongly dependent on pH. When L. mesenteroides dextransucrase (173 kDa) was hydrolyzed by protease, at pH 7 and 37 degrees C, various dextransucrase forms with molecular masses as low as 120 kDa conserving dextransucrase activity were obtained.  相似文献   

16.
Optimization of batch fermentation conditions for dextran production   总被引:3,自引:0,他引:3  
The nutrient medium (containing sucrose, yeast extract and K2HPO4), temperature and initial pH conditions were optimised for batch dextran production in shake flask fermentations using a strain of Leuconostoc mesenteroides NRRL B 512 (F). A 25−1 fractional factorial central composite experimental design was attempted. Multistage Monte Carlo optimization program was used to maximize the multiple regression equation obtained. The optimal values of tested variables for maximal dextran production were found to be: sucrose, 300 g/l; yeast extract, 10 g/l; K2HPO4, 30 g/l; temperature, 23°C and initial pH 8.3 with a predicted dextran yield of 154 g/l.  相似文献   

17.
Citric acid (CA) is the most important commercial product which is produced by using various sugar substrates in the terrestrial environment. The present study made an attempt to produce citric acid by the fungal strain Aspergillus niger from red seaweed Gelidiella acerosa is the best alternative to sugar substrate in the marine environment. In this study three types of production media were prepared including control (sucrose) by following standard fermentation conditions. The acid production was indicated by the reduction of pH levels. The control medium gave the highest yield of 80 g/l at pH 1.5 and the medium containing crude seaweed powder and other compositions gave the yield of 30 g/l at pH 3.5 whereas the medium containing crude seaweed and 10% sucrose gave the yield of 50 g/l at pH 3.0. When calculating the benefit cost ratio, crude seaweed powder and 10% sucrose yielded 50 g of citric acid at the lower cost of Rs. 35, whereas the other two media gave the yield of 80 and 30 g respectively with the cost of Rs. 77 and 28. In economic point of view, the medium containing seaweed and 10% sucrose showed more benefit with lower cost.  相似文献   

18.
Dextran is a long chain polymer of d-glucose produced by different bacterial strains including Leuconostoc, Streptococcus and Acetobacter. The bacterial cells from Leuconostoc mesenteroides KIBGE HA1 were immobilized on calcium alginate for dextran production. It was observed that dextran production increases as the temperature increases and after reaching maxima (30 °C) production started to decline. It was also observed that at 50 °C free cells stopped producing dextran, while immobilized cells continued to produce dextran even after 60 °C and still not exhausted. It was found that when 10 g% substrate (sucrose) was used, maximum dextran production was observed. Immobilized cells produced dextran upto 12 days while free cells stopped producing dextran only after 03 days. Molecular mass distribution of dextran produced by immobilized cells is low as compared to free cells.  相似文献   

19.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

20.
Mutants of Leuconostoc mesenteroides B-1355 exhibiting decreases in the apparent molecular mass of alternansucrase on sodium dodecyl sulfate (SDS)-polyacrylamide gels stained for enzyme activity were isolated after mutagenizing strain R15 with N-methyl-N(prm1)-nitro-N-nitrosoguanidine. Strain R15 was a UV mutant of strain B-1355 which was enriched for production of alternansucrase. All strains produced principal and minor alternansucrase bands on SDS gels when cultures were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The patterns of the principal and minor activity bands on our SDS gels did not result from dextran-enzyme complexes, because mutants constitutive for synthesis of glucosyltransferases (GTFs) on sugars other than sucrose produced activity bands after growth in glucose medium that were the same as those produced after growth in sucrose medium. Dextransucrase, which had been inactivated by heating at 45(deg)C, was reactivated when subjected to SDS-PAGE, showing that our SDS-PAGE conditions were reversibly denaturing. Thermal denaturation at 45(deg)C did not involve a dispersal of GTFs into subunits. Densitometry measurements showed a roughly linear relationship between enzyme activity and band intensity over a loading range of 0.2 to 0.8 mU per sample well. We concluded that SDS-PAGE followed by activity staining was a reliable method for estimating numbers and ratios of GTFs produced by Leuconostoc sp. in media containing sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号