首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro gene transfer using human papillomavirus-like particles.   总被引:10,自引:0,他引:10       下载免费PDF全文
Recombinant papillomavirus-like particles have recently been shown to be highly effective for the prevention of papillomavirus infections and associated tumors, and a virus-like particle-based vaccine against the most prevalent HPV causing genital infection in humans will be developed in the near future. Another use of these virus-like particles may lie in gene therapy and DNA immunization. We report here that human papillomavirus-like particles composed of the major capsid protein (L1) of HPV-16 are able to package unrelated plasmid DNA in vitro and then to deliver this foreign DNA to eukaryotic cells with the subsequent expression of the encoded gene. The results indicate higher gene transfer than with DNA alone or with liposome. Virus-like particles are a very promising vehicle for delivering genetic material into target cells. Moreover, the preparation of the gene transfer vehicle is relatively easy.  相似文献   

2.
Two new vaccines have been recently licensed : a quadrivalent vaccine against Human papillomavirus infections (HPV) 6, 11, 16 and 18, recommended to children from 9 years old and to young adults under the age of 26 years, and a vaccine against herpes zoster for adults from 60 years old onwards. A bivalent vaccine against HPV 16 and 18 will be shortly available. HPV vaccines are composed of the L1 structural proteins of 2 or 4 HPV genotypes, produced by genetic engineering and self-assembled. These inert vaccines are devoid of genetic materials and mimic the viral particle (virus-like particle, VLP). They allow, as suggested by the 4.5 to 5 years follow-up, to prevent HPV infections and the onset of pre-cancerous lesions associated with genotypes contained within the vaccine. They represent a major overhang in the vaccinology field, and, as anti-hepatitis B vaccine, will probably be effective in cancer prevention. Their use must be associated with the continued detection of cervix cancer by smears and also with the prevention of other sexually transmitted diseases. The herpes zoster vaccine is a living attenuated vaccine produced from the OKA/Merck strain already used in the vaccine against varicella. Its safety is good among persons 50 years old and over and its efficiency on lowering herpes zoster incidence, on the burden of illness and on post-herpetic neuralgia has been demonstrated in persons over 60 years old.  相似文献   

3.
Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.  相似文献   

4.
The recent influenza vaccine shortages have provided a timely reminder of the tenuous nature of the world's vaccine supply and the potential for manufacturing issues to severely disrupt vital access to important vaccines. The application of new technologies to the discovery, assessment, development and production of vaccines has the potential to prevent such occurrences and enable the introduction of new vaccines. Gene-based vaccines, virus-like particles, plant-derived vaccines and novel adjuvants and delivery systems represent promising approaches to creating safer, more potent vaccines. As a consequence, more people will have faster access to more effective vaccines against a broader spectrum of infectious diseases. However, the increased cost of producing new vaccines and regulatory uncertainty remain challenges for vaccine manufacturers.  相似文献   

5.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

6.
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.  相似文献   

7.
MicroRNAs are related to the development of hepatocellular carcinoma and can serve as potential therapeutic targets. Therapeutic strategies increasing tumor-suppressive microRNAs and reducing oncogenic microRNAs have been developed. Herein, the effects of simultaneously altering two microRNAs using MS2 virus-like particles were studied. The sequences of microRNA-21-sponge and pre-microRNA-122 were connected and cloned into a virus-like particle expression vector. Virus-like particles containing microRNA-21-sponge and pre-microRNA-122 sequences were prepared and crosslinked with a cell-specific peptide targeting hepatocellular carcinoma cells. Delivery effects were studied using RT-qPCR and functional assays to investigate the level of target mRNAs, cell toxicity, and the effects of proliferation, invasion, and migration. Virus-like particles delivered miR-21-sponge into cells, with the Ct value reaching 10 at most. The linked pre-miR-122 was processed into mature miR-122. The mRNA targets of miR-21 were derepressed as predicted and upregulated 1.2–2.8-fold, and the expression of proteins was elevated correspondingly. Proliferation, migration, and invasion of HCC cells were inhibited by miR-21-sponge. Simultaneous delivery of miR-21-sponge and miR-122 further decreased proliferation, migration, and invasion by up to 34%, 63%, and 65%, respectively. And the combination promoted the apoptosis of HCC cells. In conclusion, delivering miR-21-sponge and miR-122 using virus-like particles modified by cell-specific peptides is an effective and convenient strategy to correct microRNA dysregulation in hepatocellular carcinoma cells and is a promising therapeutic strategy for hepatocellular carcinoma.  相似文献   

8.
There have been two major focal points for the development of recombinant viral subunit vaccines. Expression strategies for the candidate antigens have focused increasingly on producing more natural antigenic structures, for example, virus-like particles. Also, new adjuvants have been used in order to increase immunogenicity.  相似文献   

9.
M S Harris 《Microbios》1978,21(85-86):161-176
Virus-like particles and DsRNA found in extracts of killer, non-killer and suppressive non-killer strains were co-precipitated from cell extracts using an antibody prepared against purified virus-like particles isolated from a non-killer strain having only the higher molecular weight L dsRNA. The relative amount of virus-like particles correlated roughly with the amount of dsRNA: those strains with high concentrations of dsRNA had the most particles. When a preparation of particles was subjected to sucrose gradient velocity centrifugation, particles containing the S and M dsRNA could be separated from those containing the L dsRNA. These experiments taken together suggest that the L, M and S dsRNAs are separately encapsulated by the same protein coat.  相似文献   

10.
Lassa and Ebola viruses cause acute, often fatal, hemorrhagic fever diseases, for which no effective vaccines are currently available. Although lethal human disease outbreaks have been confined so far to sub-Saharan Africa, they also pose significant epidemiological concern worldwide as demonstrated by several instances of accidental importation of the viruses into North America and Europe. In the present study, we developed experimental individual vaccines for Lassa virus and bivalent vaccines for Lassa and Ebola viruses that are based on an RNA replicon vector derived from an attenuated strain of Venezuelan equine encephalitis virus. The Lassa and Ebola virus genes were expressed from recombinant replicon RNAs that also encoded the replicase function and were capable of efficient intracellular self-amplification. For vaccinations, the recombinant replicons were incorporated into virus-like replicon particles. Guinea pigs vaccinated with particles expressing Lassa virus nucleoprotein or glycoprotein genes were protected from lethal challenge with Lassa virus. Vaccination with particles expressing Ebola virus glycoprotein gene also protected the animals from lethal challenge with Ebola virus. In order to evaluate a single vaccine protecting against both Lassa and Ebola viruses, we developed dual-expression particles that expressed glycoprotein genes of both Ebola and Lassa viruses. Vaccination of guinea pigs with either dual-expression particles or with a mixture of particles expressing Ebola and Lassa virus glycoprotein genes protected the animals against challenges with Ebola and Lassa viruses. The results showed that immune responses can be induced against multiple vaccine antigens coexpressed from an alphavirus replicon and suggested the possibility of engineering multivalent vaccines based upon alphavirus vectors for arenaviruses, filoviruses, and possibly other emerging pathogens.  相似文献   

11.
Donald R. Markey 《Protoplasma》1974,80(1-3):223-232
Summary Virus-like particles are described which occur in the unilocular sporangia of the marine brown algaPylaiella littoralis. The particles are hexagonal in the ultrathin section, 130–170 nm in diameter and resemble virus-like particles and true viruses seen in other organisms. Sporangia which contain virus-like particles exhibit various inclusions and modifications, such as dark-staining areas in the nucleus and membranous components in the cytoplasm, which are not seen in uninfected sporangia and which may be involved in the development of the particles.  相似文献   

12.
Virus-like particles as immunogens   总被引:19,自引:0,他引:19  
Subunit vaccines based on recombinant proteins can suffer from poor immunogenicity owing to incorrect folding of the target protein or poor presentation to the immune system. Virus-like particles (VLPs) represent a specific class of subunit vaccine that mimic the structure of authentic virus particles. They are recognized readily by the immune system and present viral antigens in a more authentic conformation than other subunit vaccines. VLPs have therefore shown dramatic effectiveness as candidate vaccines. Here, we review the current status of VLPs as vaccines, and discuss the characteristics and problems associated with producing VLPs for different viruses.  相似文献   

13.
Recombinant immunotherapeutics are important biologics for the treatment and prevention of various diseases. Immunotherapy can be divided into two categories, passive and active. For passive immunotherapy, the successes of antibody and cytokine therapeutics represent a promising future and opportunities for improvements. Efforts, such as cell engineering, antibody engineering, human-like glycosylation in yeast, and Fab fragment development, have led the way to improve antibody efficacy while decreasing its high manufacturing costs. Both new cytokines and currently used cytokines have demonstrated therapeutic effects for different indications. As for active immunotherapy, recently approved HPV vaccines have encouraged the development of preventative vaccines for other infectious diseases. Immunogenic antigens of pathogenic bacteria can now be identified by genomic means (reverse vaccinology). Due to the recent outbreaks of pandemic H1N1 influenza virus, recombinant influenza vaccines using virus-like particles and other antigens have also been engineered in several different recombinant systems. However, limitations are found in existing immunotherapeutics for cancer treatment, and recent development of therapeutic cancer vaccines such as MAGE-A3 and NY-ESO-1 may provide alternative therapeutic strategy.  相似文献   

14.
Monkey kidney cells CV-1 were infected with recombinant vaccinia virus carrying HIV-1 gag gene with a deletion of 230 nucleotide pairs from the 3'-terminus. The main gene product detected in the lysates of infected cells was the gag precursor rp50. The protein was accumulated on the cell membranes suggesting that it had a myristylated N-terminus, and was cleaved by a recombinant virus specific protease with the formation of two proteins, p17 and p24 corresponding in molecular masses to mature gag proteins. Virus-like particles similar to immature HIV virions were budding from the surface of infected cells. They look like the ring of optically dense material covered with a lipid bilayer, of the same size (100-120 nm) and of the same density in a sucrose gradient (1.16-1.18 g/ml) as HIV-1 virions. The particles contained rp50 and cellular heterogeneous RNA. Thus, the unprocessed gag precursor with deleted 77 amino acid residues from the C-terminus is able to form virus-like particles in the absence of env proteins and virus-specific RNA, and these particles are budding from the cell surface. The question about the use of extracellular Gag-particles for AIDS diagnostic work and construction of vaccines is discussed.  相似文献   

15.
Virus-like particles, acute hepatitis, hepatitis type C. Intranuclear virus-like particles were found by electron microscopy in liver cells of a woman suffering from mild HBsAG- and IHxAG negative acute hepatitis. The particles encountered were morphologically different from those found in hepatitis B and hepatitis A respectively. Futher studies are required to clarify whether the structures represent an incidental finding of a new human (passenger) virus or they may be related to the aetiological agent of the supposed hepatitis type C.  相似文献   

16.
Virus-like particles (VLPs) can be produced in recombinant protein production systems by expressing viral surface proteins that spontaneously assemble into particulate structures similar to authentic viral or subviral particles. VLPs serve as excellent platforms for the development of safe and effective vaccines and diagnostic antigens. Among various recombinant protein production systems, the baculovirus–insect cell system has been used extensively for the production of a wide variety of VLPs. This system is already employed for the manufacture of a licensed human papillomavirus-like particle vaccine. However, the baculovirus–insect cell system has several inherent limitations including contamination of VLPs with progeny baculovirus particles. Stably transformed insect cells have emerged as attractive alternatives to the baculovirus–insect cell system. Different types of VLPs, with or without an envelope and composed of either single or multiple structural proteins, have been produced in stably transformed insect cells. VLPs produced by stably transformed insect cells have successfully elicited immune responses in vivo. In some cases, the yield of VLPs attained with recombinant insect cells was comparable to, or higher than, that obtained by baculovirus-infected insect cells. Recombinant insect cells offer a promising approach to the development and production of VLPs.  相似文献   

17.
Filoviruses are hemorrhagic fever viruses endemic to parts of Africa and the Philippines. Infection carries with it a mortality rate of up to 90% and currently there are no effective vaccines or therapeutics available to combat infection. However, the filovirus virus-like particles (VLP), which are currently under development, have been shown to be a promising vaccine candidate. They provide protection from infection in the mouse, guinea pig, and nonhuman primate models of infection, eliciting high anti-glycoprotein antibody titers and T cell responses to viral proteins. In this review, we will highlight the development of the filovirus VLP and describe the current understanding of VLP immunogenicity and correlates of protection.  相似文献   

18.
19.
Many viral coat proteins retain the ability to assemble into virus-like particles when produced as recombinant proteins. These small particles are highly immunogenic, and in many cases can be used to carry epitopes or antigens from other pathogens. Most particle-forming proteins can tolerate only small additions or alterations to their sequence, but Hepatitis B virus surface antigen (HBsAg) and the yeast-derived Ty particle are exceptionel in their ability to form particles with long N- or C-terminal extensions. Both have been used to produce hybrid particles carrying Plasmodium sequences. These have been shown to be highly immunogenic in animal studies and also in human phase I trials, in the case of HBsAg. Recently, six out of seven human volunteers were protected against sporozoite challenge by a recombinant HBsAg particle vaccine, the most encouraging result to date for any pre-erythrocytic malaria vaccine. Here, Sarah Gilbert and Adrian Hill review the prospects for the future development of protein particle vaccines against malaria.  相似文献   

20.
Viruses that infect eukaryotic organisms have the unique characteristic of self-assembling into particles. The mammalian immune system is highly attuned to recognizing and attacking these viral particles following infection. The use of particle-based immunogens, often delivered as live-attenuated viruses, has been an effective vaccination strategy for a variety of viruses. The development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge, since HIV infects cells of the immune system causing severe immunodeficiency resulting in the syndrome known as AIDS. In addition, the ability of the virus to adapt to immune pressure and reside in an integrated form in host cells presents hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes against different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immune responses. However, while these vaccines stimulate immunity, challenged animals rarely clear the viral infection and the degree of attenuation directly correlates with protection from disease. Further, a live-attenuated vaccine has the potential to revert to a pathogenic form. Alternatively, virus-like particles (VLPs) mimic the viral particle without causing an immunodeficiency disease. VLPs are self-assembling, non-replicating, non-pathogenic particles that are similar in size and conformation to intact virions. A variety of VLPs for lentiviruses are currently in preclinical and clinical trials. This review focuses on our current status of VLP-based AIDS vaccines, regarding issues of purification and immune design for animal and clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号