首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To date, only a few studies have focused on the effects of sex on population dynamics. Previous models have typically found that sexual reproduction dampens population fluctuations. Although asexual and sexual reproduction are just the two endpoints along a continuum of varying rates of sex, previous work has ignored the effects of intermediate degrees of sex on population dynamics. Here we study the effects of partial sexual reproduction (i.e. sex occurs only every few generations or with small probability in each generation) on the coupled population dynamics of a Nicholson-Bailey host-parasite model. We show that complex dynamics are simplified for high host population growth rates if the frequency of sex is sufficiently high in both host and parasite: sex decreases fluctuations in population density, and leads to non-chaotic dynamics for population growth rates that would result in chaotic dynamics in the absence of sexual reproduction. However, the simplification does not increase gradually with an increasing frequency of sex but appears abruptly at low-to-intermediate frequencies of sex. For some parameter settings, intermediate frequencies of sexual reproduction can simplify the dynamics more than lower or higher frequencies. Thus, in agreement with earlier results, sexual reproduction typically stabilizes complex population dynamics in our models. Additionally, our results suggest that low-to-intermediate frequencies of sex may often be as (or even more) stabilizing as high frequencies.  相似文献   

2.
To date, experiments in economics are restricted to situations in which individuals are not influenced by the physical presence of other people. In such contexts, interactions remain at an abstract level, agents guessing what another person is thinking or is about to decide based on money exchange. Physical presence and bodily signals are therefore left out of the picture. However, in real life, social interactions (involving economic decisions or not) are not solely determined by a person''s inference about someone else''s state-of-mind. In this essay, we argue for embodied economics: an approach to neuroeconomics that takes into account how information provided by the entire body and its coordination dynamics influences the way we make economic decisions. Considering the role of embodiment in economics—movements, posture, sensitivity to mimicry and every kind of information the body conveys—makes sense. This is what we claim in this essay which, to some extent, constitutes a plea to consider bodily interactions between agents in social (neuro)economics.  相似文献   

3.
Dispersal is a key trait responsible for the spread of individuals and genes among local populations, thereby generating eco‐evolutionary interactions. Especially in heterogeneous metapopulations, a tight coupling between dispersal, population dynamics and the evolution of local adaptation is expected. In this respect, dispersal should counteract ecological specialization by redistributing locally selected phenotypes (i.e. migration load). Habitat choice following an informed dispersal decision, however, can facilitate the evolution of ecological specialization. How such informed decisions influence metapopulation size and variability is yet to be determined. By means of individual‐based modelling, we demonstrate that informed decisions about both departure and settlement decouple the evolution of dispersal and that of generalism, selecting for highly dispersive specialists. Choice at settlement is based on information from the entire dispersal range, and therefore decouples dispersal from ecological specialization more effectively than choice at departure, which is only based on local information. Additionally, habitat choice at departure and settlement reduces local and metapopulation variability because of the maintenance of ecological specialization at all levels of dispersal propensity. Our study illustrates the important role of habitat choice for dynamics of spatially structured populations and thus emphasizes the importance of considering that dispersal is often informed.  相似文献   

4.
Ontogenetic niche shifts, changes in the diet or habitats of organisms during their ontogeny, are widespread among various animal taxa. Ontogenetic niche shifts introduce stage structure in a population with different stages interacting with different communities and can substantially affect their dynamics. In this article, I use mathematical models to test the hypothesis that adaptive plasticity in the timing of ontogenetic niche shifts has a stabilizing effect on consumer-resource dynamics. Adaptive plasticity allows consumers in one ontogenetic niche to perform an early shift to the next ontogenetic niche if the resource density of the first niche is low. The early shift will reduce predation by the consumer on the scarce resource. On the other hand, adaptive plasticity allows consumers to delay their shift to the next niche if the resource density of the first niche is high. The delayed shift will increase the predation on the abundant resource. As a result, the scarce resource will tend to increase, and the abundant resource will tend to decrease. This causes density-dependent negative feedback in the resource dynamics, which stabilizes the consumer-resource dynamics. To test this hypothesis, I compare three consumer-resource models differing in terms of mechanisms controlling the timing of the ontogenetic niche shift: the fixed-age model assumes that the age at which the ontogenetic niche shift occurs is fixed; the fixed-size model assumes that the size at the shift is fixed; and the adaptive plasticity model assumes that the timing of the shift is such that the individual fitness of the consumer is maximized. I show that only the adaptive plasticity model has a locally stable equilibrium and that the stabilizing effect is due to the density-dependent negative feedback in the resource dynamics. I discuss the ontogenetic niche shifts of lake fish in light of the obtained result.  相似文献   

5.
Recent studies have shown that adaptive evolution can be rapid enough to affect contemporary ecological dynamics in nature (i.e. ‘rapid evolution’). These studies tend to focus on trait functions relating to interspecific interactions; however, the importance of rapid evolution of stoichiometric traits has been relatively overlooked. Various traits can affect the balance of elements (carbon, nitrogen, and phosphorus) of organisms, and rapid evolution of such stoichiometric traits will not only alter population and community dynamics but also influence ecosystem functions such as nutrient cycling. Multiple environmental changes may exert a selection pressure leading to adaptation of stoichiometrically important traits, such as an organism's growth rate. In this paper, we use theoretical approaches to explore the connections between rapid evolution and ecological stoichiometry at both the population and ecosystem level. First, we incorporate rapid evolution into an ecological stoichiometry model to investigate the effects of rapid evolution of a consumer's stoichiometric phosphorus:carbon ratio on consumer–producer population dynamics. We took two complementary approaches, an asexual clonal genotype model and a quantitative genetic model. Next, we extended these models to explicitly track nutrients in order to evaluate the effect of rapid evolution at the ecosystem level. Our model results indicate rapid evolution of the consumer stoichiometric trait can cause complex dynamics where rapid evolution destabilizes population dynamics and rescues the consumer population from extinction (evolutionary rescue). The model results also show that rapid evolution may influence the level of nutrients available in the environment and the flux of nutrients across trophic levels. Our study represents an important step for theoretical integration of rapid evolution and ecological stoichiometry.  相似文献   

6.
Spiral-wave (SW) reentry is a major organizing principle of ventricular tachycardia/fibrillation (VT/VF). We tested a hypothesis that pharmacological modification of gap junction (GJ) conductance affects the stability of SW reentry in a two-dimensional (2D) epicardial ventricular muscle layer prepared by endocardial cryoablation of Langendorff-perfused rabbit hearts. Action potential signals were recorded and analyzed by high-resolution optical mapping. Carbenoxolone (CBX; 30 μM) and rotigaptide (RG, 0.1 μM) were used to inhibit and enhance GJ coupling, respectively. CBX decreased the space constant (λ) by 36%, whereas RG increased it by 22-24% (n = 5; P < 0.01). During centrifugal propagation, there was a linear relationship between the wavefront curvature (κ) and local conduction velocity (LCV): LCV = LCV(0) - D·κ (D, diffusion coefficient; LCV(0), LCV at κ = 0). CBX decreased LCV(0) and D by 27 ± 3 and 57 ± 3%, respectively (n = 5; P < 0.01). RG increased LCV(0) and D by 18 ± 3 and 54 ± 5%, respectively (n = 5, P < 0.01). The regression lines with and without RG crossed, resulting in a paradoxical decrease of LCV with RG at κ > ~60 cm(-1). SW reentry induced after CBX was stable, and the incidence of sustained VTs (>30 s) increased from 38 ± 4 to 85 ± 4% after CBX (n = 18; P < 0.01). SW reentry induced after RG was characterized by decremental conduction near the rotation center, prominent drift and self-termination by collision with the anatomical boundaries, and the incidence of sustained VTs decreased from 40 ± 5 to 17 ± 6% after RG (n = 13; P < 0.05). These results suggest that decreased intercellular coupling stabilizes SW reentry in 2D cardiac muscle, whereas increased coupling facilitates its early self-termination.  相似文献   

7.
A relative phase model of four coupled oscillators is used to interpret experiments on the coordination between rhythmically moving human limbs. The pairwise coupling functions in the model are motivated by experiments on two-limb coordination. Stable patterns of coordination between the limbs are represented by fixed points in relative phase coordinates. Four invariant circles exist in the model, each containing two patterns of coordination seen experimentally. The direction of switches between two four-limb patterns on the same circle can be understood in terms of two-limb coordination. Transitions between patterns in the human four-limb system are theoretically interpreted as bifurcations in a nonlinear dynamical system.  相似文献   

8.
Key methodological issues for designing, analyzing, and interpreting neuroimaging experiments are presented from the perspective of the framework of Coordination Dynamics. To this end, a brief overview of Coordination Dynamics is introduced, including the main concepts of control parameters and collective variables, theoretical modeling, novel experimental paradigms, and cardinal empirical findings. Basic conceptual and methodological issues for the design and implementation of coordination experiments in the context of neuroimaging are discussed. The paper concludes with a presentation of neuroimaging findings central to understanding the neural basis of coordination and addresses their relevance for the sport sciences. The latter include but are not restricted to learning and practice-related issues, the role of mental imagery, and the recovery of function following brain injury.  相似文献   

9.
10.
Resource subsidies from external habitats can substantially affect the food web dynamics of local habitats. In this paper, we explore a mathematical model that is tailored for a stream food web, studied by Nakano and colleagues, in which consumers, in situ prey and subsidies all show seasonal fluctuation. The model reveals that the food web dynamics are stabilized if subsidies increase in summer when in situ productivity is low. Consumer dynamics are stabilized because subsidies complement seasonal resource deficiency. In situ prey dynamics are stabilized because subsidies indirectly balance the predation pressure by consumers, with seasonal change in prey carrying capacity. In summer when prey carrying capacity is low, seasonally abundant subsidies indirectly decrease predation pressure, whereas in winter, with high prey carrying capacity, scarce subsidies increase the predation pressure. Our results suggest that temporal productivity differences between spatially linked habitats are important to promote the stability of food web dynamics in a landscape context.  相似文献   

11.
Journal of Computational Neuroscience - In spite of their anatomical robustness, it has been difficult to establish the functional role of corticogeniculate circuits connecting primary visual...  相似文献   

12.
Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer.  相似文献   

13.
Qu J  Liu GH  Wu K  Han P  Wang P  Li J  Zhang X  Chen C 《PloS one》2007,2(10):e1085
Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide (NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32), a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and pathological processes.  相似文献   

14.
 Various stability features of bimanual rhythmic coordination, including phase transitions, have been modeled successfully by means of a one-dimensional equation of motion for relative phase obeying a gradient dynamics, the Haken-Kelso-Bunz model. The present study aimed at assessing pattern stability for stationary performance and estimating the model parameters (a, b, and Q) for the stochastic extension of this model. Estimates of a and b allowed for reconstruction of the potential defining the gradient dynamics. Two coordination patterns between the forearms (in-phase, anti-phase) were performed at seven different frequencies. Model parameters were estimated on the basis of an exponential decay parameter describing the relaxation behavior of continuous relative phase following a mechanical perturbation. Variability of relative phase and relaxation time provided measures of pattern stability. Although the predicted inverse relation between pattern stability and movement frequency was observed for the lower tempo conditions, it was absent for the higher tempos, reflecting the influence of task constraints. No statistically significant differences in stability were observed between the two coordination modes, indicating the influence of intention. The reconstructed potential reflected the observed stability features, underscoring the adequacy of the parameter estimations. The relaxation process could not be captured adequately by means of a simple exponential decay function but required an additional oscillatory term. In accordance with previous assumptions, noise strength Q did not vary as a function of movement frequency. However, systematic differences in Q were observed between the two coordination modes. The advantages and (potential) pitfalls of using stationary performance of single patterns to examine the stability features of a bistable potential were discussed. Received: 12 July 1999 / Accepted in revised form: 14 April 2000  相似文献   

15.
Zusammenfassung Mechanisierte Sprachübersetzung, Speichern von Information und Mustererkennung stellen drei Sonderfälle der allgemeinen Operationen Lernen, Ordnen und Erkennen dar. Die Automatisierung solcher Operationen bildet nicht nur ein an und für sich interessantes Problem, sondern eine dringliche Notwendigkeit, sollen die universellen Gro Brechenanlagen nicht an der Komplexität ihrer inneren Organisation (soft-ware) ersticken. Als vielleicht einfachstes dieser drei — im Grunde nie getrennt auftretenden — Vorgänge, wird das Problem der Wiedererkennung betrachtet, d.h. dasjenige der Abbildung eines kontinuierlichen Ensembles reeller, metrischer Objekte auf eine endliche, diskrete Struktur ohne Metrik, wie sie beispielsweise das Innere einer digitalen Rechenanlage darstellt. Der notwendige Übergang vom heute einzig üblichen Speicher zum eigentlichen Gedächtnis hängt unter anderem von der Lösung dieses Problems ab. Seine Untersuchung hebt die grundsätzliche Bedeutung der Umgebung einzelner Objekte — ihres Kontextes — hervor, welche Umgebung im diskreten Raum das notwendige Äquivalent zum Kontinuum darstellt. Dies führt zu einer neuen Betrachtung des Paradoxon von Brillouin, und zur notwendigen Benützung dynamischer Methoden bei der Verarbeitung von Information, anders gesagt bei ihrer Überführung aus der bildhaft-kontinuierlichen Form in die diskrete, und zurück. Womit zumindest eine mögliche Definition nicht-trivialer Informationsverarbeitung gegeben ist.  相似文献   

16.
The paper treats some nonlinear dynamic phenomena in oscillatory activity of a single nerve cell. Based on experiments with CNS bursting pacemaker neurons ofHelix pomatia snail, a mathematical model was studied. The model demonstrates the majority of experimentally observable phenomena and allows one to investigate the role of its separate components. The phenomena demonstrated by model neuron (chaotic behavior, bistability, and sensitivity to parameter variations, initial conditions, and stimuli) may be relevant to information processing in nerve cells. The complexity of [Ca2+] in V phase diagrams of initial conditions depends on parameters. Transient synaptic impulse produces stable parameter-independent changes in activity of model neuron. These results indicate that a single bursting neuron can work in the neuronal ensemble as a dynamic switch. The sensitivity of this switch is regulated by a neurotransmitter.  相似文献   

17.
18.
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.  相似文献   

19.
 Dynamical models of two coupled biological oscillators interpret the detuning term as an arithmetic difference between the uncoupled frequencies, Δω= (ω1−ω2). This Δω interpretation of detuning was addressed in four experiments in which human subjects oscillated pendulums in their right and left hands in 1 : 1 frequency locking in antiphase (Experiments 1–3) or inphase (Experiment 4). Differences between the uncoupled frequencies were manipulated through differences in the equivalent simple pendulum lengths, and the effects of this manipulation on the detuning of relative phase from π or 0 and the standard deviation of relative phase SDφ were measured. In Experiment 1, the same values of ω i were satisfied by several different physical configurations. The experiment confirmed that the detuning term is related strictly to the uncoupled frequencies rather than to other physical characteristics of the oscillators. Experiments 2, 3 and 4 showed, however, that the particular dependency of fixed point drift and SDφ on Δω depends on the particulars of ω1 and ω2. With variations in Δω brought about by different ω1 and ω2 that always formed a constant ratio, fixed point drift related inversely to Δω, and SDφ varied with Δω in ways that depended on the magnitude of the constant ratio. These outcomes do not conform to expectations from models of coordination dynamics that interpret detuning as (ω1−ω2). Received: 18 October 1993/Accepted in revised form: 2 December 1994  相似文献   

20.
Human interaction partners tend to synchronize their movements during repetitive actions such as walking. Research of inter-human coordination in purely rhythmic action tasks reveals that the observed patterns of interaction are dominated by synchronization effects. Initiated by our finding that human dyads synchronize their arm movements even in a goal-directed action task, we present a step-wise approach to a model of inter-human movement coordination. In an experiment, the hand trajectories of ten human dyads are recorded. Governed by a dynamical process of phase synchronization, the participants establish in-phase as well as anti-phase relations. The emerging relations are successfully reproduced by the attractor dynamics of coupled phase oscillators inspired by the Kuramoto model. Three different methods on transforming the motion trajectories into instantaneous phases are investigated and their influence on the model fit to the experimental data is evaluated. System identification technique allows us to estimate the model parameters, which are the coupling strength and the frequency detuning among the dyad. The stability properties of the identified model match the relations observed in the experimental data. In short, our model predicts the dynamics of inter-human movement coordination. It can directly be implemented to enrich human-robot interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号