首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The systemic induction of expression of the gene for proteinase inhibitor II after wounding different parts of potato (Solanum tuberosum L.) plants was analysed at the RNA level. Wounding of either leaves or tubers led to an induction of expression of this gene in non-wounded upper and lower leaves as well as in the upper stem segment, whereas no expression was observed in nonwounded roots or in the lower stem segment. The signal mediating the systemic induction in nonwounded tissue must therefore be able to move both acropetally and basipetally. The systemic wound response is specific for the expression of the proteinase-inhibitor-II gene as no influence was observed for the expression of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase and the tuber storage protein patatin which were examined in parallel with the proteinase-inhibitor-II gene.Abbreviation ssRubisco small subunit of ribulose-1,5-bis-phosphate carboxylase  相似文献   

2.
In whole intact potato (Solanum tuberosum L.) plants, the gene families of class-I patatin and proteinase inhibitor II (Pin 2) are constitutively expressed in the tubers. However, they are also induced in detached potato leaves in the presence of light. To further characterize this light action, the detached leaves were subjected to monochromatic light of different wavelengths and to darkness in the presence of metabolites and inhibitors. Patatin genes could be induced by the simultaneous application of sucrose (sugars) and glutamine in darkness. Neither of these metabolites was active when supplied alone. When photosynthesis was blocked by 3-(3,4-Di-chlorophenyl)-1, 1-dimethylurea (DCMU) in the light, patatin genes were not expressed; however, the inhibition was overcome in the presence of sucrose. This indicates that besides its role in photosynthetic carbohydrate production, light may be essential for the supply of amino acids (or reduced nitrogen). Unlike patatin, Pin 2 genes were, to a small extent, also active in darkness, and sucrose weakly enhanced this expression. However, DCMU did not affect Pin 2 expression in the light. Both abscisic acid and methyl jasmonate strongly promoted the accumulation of Pin 2 mRNA independent of the light conditions, indicating that the gene family is probably under hormonal control. The phytohormones did not affect patatin gene expression. Inhibitors of cytosolic (cycloheximide) and organellar (chloramphenicol) translation had opposite effects on the two gene families. Careful evaluation of the inhibitors' action indicates that protein synthesis (cytosol) is required for the expression of Pin 2 genes but not for the patatin genes. These results clearly demonstrate that, although in situ both gene families are constitutively expressed in the same plant organ (tuber) in intact plants, their expression is mediated by different factors.Abbreviations ABA cis-abscisic acid - DCMU 3-(3,4-dichlorphenyl)-1,1-dimethylurea - GUS -glucuronidase activity - MeJA methyl jasmonate - Pin 2 proteinase inhibitor II We thank Beate Küsgen and Regina Breitfeld for the greenhouse work. This work was supported by a grant from the Bundesministerium für Forschung und Technologie.  相似文献   

3.
Jasmonic acid (JA) and its methyl ester, like mechanical wounding, strongly induce accumulation of proteinase inhibitor II (Pin2) in tomato and potato leaves. In plants, JA is synthesized from α-linolenic acid by a lipoxygenase (LOX)-mediated oxygenation leading to 13-hydroxyperoxylinolenic acid (13-HPLA) which is then subsequently transformed to JA by the action of hydroperoxide-dehydrase activity and additional modification steps. Both the chemical structure as well as the biosynthetic pathway of JA resemble those of the mammalian eicosanoids (prostaglandins and leukotrienes) which are derived from LOX-and cyclooxygenase (COX)-mediated reactions. To assess the role of endogenous JA in the wound response, detached tomato (Lycopersicon esculentum Mill.) leaves were supplied with different LOX and COX inhibitors and the expression of the wound-induced genes for Pin2 (Pin2), cathepsin D inhibitor (Cdi) and threonine deaminase (Td) was analyzed. Lipoxygenase inhibitors as well as some COX inhibitors blocked the wound-induced accumulation of Pin2, Cdi and Td mRNA. Quantitation of endogenous levels of JA showed that aspirin blocks the increase of this phytohormone normally observed as a result of wounding. Linolenic acid and 13-HPLA do not induce the expression of Pin2, Cdi and Td in the presence of aspirin. However, 12-oxo-phytodienoic acid and jasmonic acid are able to overcome the inhibitory effect of this substance. These results strongly indicate that aspirin prevents wound-induced gene activation by inhibiting the hydroxyperoxide-dehydrase activity that mediates the conversion of 13-HPLA to 12-oxo-phytodienoic acid.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Copy-DNA clones have been obtained that distinguish eight messenger mRNAs, moderately abundant in the axes of the germinating soybean (Glycine max (L.) Merr.) seedling. These clones have been used to characterize the size of the mRNAs and to anlyze the accumulation of the mRNAs at different time points and in different parts of the axis during germination and early seedling growth. Three of the mRNAs accumulate to a substantial level by 9 h, a time point before either the beginning of growth or the accumulation of polyribosomes. Four other mRNAs reach a substantial level only at 24 h, a period when rapid seedling growth is occurring. Those mRNAs whose accumulation begins at 24 h were found only in the top (hypocotyl) half of the 24-h seedlings, while the remaining mRNAs were present also in the bottom half of the seedlings in different amounts. By 44 h, the bottom 0.5 cm of the seedlings, i.e., the region of meristematic growth, had little or none of the mRNAs, with the exception of one mRNA. These temporal and spatial observations indicate that many of the mRNAs are not involved simply in the general maintenance of ongoing cell proliferation, but that they may be related to differentiation during early seedling formation. Further, the early accumulating mRNAs may be functioning in regulating the onset of seedling growth.Abbreviations cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   

11.
12.
The aim of this work was to compare the coldlability of phosphofructokinase (EC 2.7.1.11) from tubers of potato cultivars (cvs.) known to differ in their propensity to accumulate sugars at low temperature. When stored at 4°C for six weeks, the sugar content of tubers ofSolanum tuberosum L. cv. Record doubled whereas the amount of sugar in tubers of cv. Brodick and an advanced breeding clone (13676) decreased slightly. Tubers from each line contained four forms of phophofructokinase. Over the range 12°–16°C the temperature coefficients of the four forms of phosphofructokinase from cvs. Record and Brodick were similar. In cv. Record the temperature coefficients of three of the enzyme forms were significantly higher at 2°–6°C than at 12°–16°C, whereas those from cv. Brodick were unchanged. These results are consistent with the proposal that inactivation of phosphofructokinase at low temperature results in the accumulation of hexose phosphates leading to increased sucrose synthesis.  相似文献   

13.
The role of systemin inPin2 gene expression was analyzed in wild-type plants of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.), as well as in abscisic acid (ABA)-deficient tomato (sitiens) and potato (droopy) plants. The results showed that systemin initiates Pin2 mRNA accumulation only in wildtype tomato and potato plants. As in the situation after mechanical wounding,Pin2 gene expression in ABA-deficient plants was not activated by systemin. Increased endogenous levels of jasmonic acid (JA) and accumulation of Pin2 mRNA were observed following treatment with α-linolenic acid, the precursor of JA biosynthesis, suggesting that these ABA mutants still have the capability to synthesize de novo JA. Measurement of endogenous levels of ABA and JA showed that systemin leads to an increase of both phytohormones (ABA and JA) only in wild-type but not in ABA-deficient plants.  相似文献   

14.
15.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants have been wounded to induce the accumulation of proteinase-inhibitor proteins (PI proteins) at the local site of injury and systemically in unwounded tissues. To determine the range of genes affected in the wound-response, polysomal mRNA has been isolated from the damaged leaves and from systemically responding leaves over a time-course of 2, 4, 10 and 24 h after wounding. Changes in the pattern of 35S-translation products indicate that the events that occur at the local wound-site are different from those that occur systemically, both with respect to the number of genes that are regulated and the timing of their regulation. In order to compare the effects of wounding and an endogenous systemic signal generated at the wound-site with those of elicitor (proteinase-inhibitor-inducing factor, PIIF) treatment of excised plants, polysomal mRNA has also been isolated from leaves of plants over a time-course of 2, 4, 10 and 24 h after PIIF-treatment. Changes in the pattern of 35S-translation products indicates that the events induced by PIIF resemble those induced by mechanical injury, rather than those induced by the endogenous systemic signal.Abbreviations IFF isoelectric focussing - PI proteins proteinase inhibitor proteins - PIIF proteinase-inhibitor-inducing factor - ssRubisco small subunit of ribulose-1,5-bisphosphate carboxylase  相似文献   

16.
Summary Mechanical wounding of potato leaves, stems, roots and tubers leads to a rapid increase of wun1 mRNA. In potato leaves, the wound-induced accumulation of wun1 mRNA is inhibited by the addition of sucrose or other osmotically active agents. This inhibition is organ specific since sucrose does not prevent wun1 mRNA accumulation in wounded tubers. In contrast, expression of patatin was shown to be repressed in tubers by wounding and this repression was reversed by increasing osmotic pressure. Sequence data obtained from the analysis of a wun1 cDNA and a wun1 genomic clone show no homology to any gene known so far. Histochemical data demonstrate a striking analogy in cell specific expression of chimeric genes expressed under the control of the wun1 promoter and the cell specific production of callose in wounded tobacco leaves.  相似文献   

17.
18.
Sharma SK  Millam S  Hein I  Bryan GJ 《Planta》2008,228(2):319-330
Somatic embryogenesis offers great potential in plant propagation, long-term germplasm conservation, and as a suitable model system for deciphering early events during embryogenesis. The up-regulation and ectopic expression of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene has been shown to mark and enhance embryogenic competence in somatic cells of model plant species. We have cloned and characterised a SERK gene (StSERK1) from potato (Solanum tuberosum L.), an important crop plant. Sequence analysis of StSERK1 revealed high levels of similarity to other plant SERKs, as well as a conserved intron/exon structure which is unique to members of the SERK family. Furthermore, StSERK clustered most closely with SERK gene family members such as MtSERK1, CuSERK1, AtSERK1, and DcSERK, implicated in evoking somatic embryogenesis. Monitoring of SERK expression during progression of potato somatic embryogenesis revealed increased StSERK expression during the induction phase. Subsequently, during the embryo transition phases, StSERK expression was unchanged and did not vary among embryo-forming and inhibitory conditions. However, in isolated somatic embryos StSERK expression was again up-regulated. In other plant parts (leaves, true potato seeds, microtubers and flower buds), StSERK showed different levels of expression. Expression analysis suggests that the isolated StSERK could be a functional SERK orthologue. The possible role of SERK as a marker of pluripotency, rather than embryogenesis alone, is discussed.  相似文献   

19.
20.
Thioglucoside glucohydrolase (EC 3.2.3.1; myrosinase) hydrolyses glucosinolates and thereby liberates glucose and sulphur and nitrogen compounds. To examine the hypothesis that the myrosinase-glucosinolate system is influenced by environmental factors, the effect of sulphate on the expression of myrosinases was examined. On examining different plant organs at various stages, it was observed that sulphate induces a differential expression of myrosinase polypeptides in plants ofSinapis alba L. (white mustard). Specific myrosinase polypeptides, dependent on sulphate in the growth medium, were detected on immunoblots. Without sulphate a maximum of three polypeptides was detected in buds, two in cotyledons and one in stems and roots. In plants cultured on medium with sulphate up to four polypeptides could be observed in cotyledons, five polypeptides in buds, two in stems and one in roots. Expression of myrosinases was, in general, high in plants cultured on a medium supplemented with sulphate. In floweringS. alba plants, sulphate-starved plants showed a higher expression of myrosinase in cotyledons and stems compared to plants fed with sulphate. Sulphate-fed plants had a high expression in inflorescences and roots. The organ- and time-specific induction of the myrosinase expression is discussed in relation to sulphate metabolism and availability of sulphate under normal conditions of cultivation and in relation to protection of Brassicaceae species. This is the first evidence for a specific induction of individual myrosinase proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号