首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Endovanilloids are defined as endogenous ligands of the transient receptor potential vanilloid type 1 (TRPV1) protein, a nonselective cation channel that belongs to the large family of TRP ion channels, and is activated by the pungent ingredient of hot chilli peppers, capsaicin. TRPV1 is expressed in some nociceptor efferent neurons, where it acts as a molecular sensor of noxious heat and low pH. However, the presence of these channels in various regions of the central nervous system, where they are not likely to be targeted by these noxious stimuli, suggests the existence of endovanilloids. Three different classes of endogenous lipids have been found recently that can activate TRPV1, i.e. unsaturated N-acyldopamines, lipoxygenase products of arachidonic acid and the endocannabinoid anandamide with some of its congeners. To classify a molecule as an endovanilloid, the compound should be formed or released in an activity-dependent manner in sufficient amounts to evoke a TRPV1-mediated response by direct activation of the channel. To control TRPV1 signaling, endovanilloids should be inactivated within a short time-span. In this review, we will discuss, for each of the proposed endogenous ligands of TRPV1, their ability to act as endovanilloids in light of the criteria mentioned above.  相似文献   

2.
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer (FRET) imaging. We show that TRPV1 is split into three populations with fairly different molecular properties: one binding to caveolin-1 and confined into caveolar structures, one actively guided by microtubules through selective binding, and one which diffuses freely and is not directly implicated in regulating receptor functionality. The emergence of caveolin-1 as a new interactor of TRPV1 evokes caveolar endocytosis as the main desensitization pathway of TRPV1 receptor, while microtubule binding agrees with previous data suggesting the receptor stabilization in functional form by these cytoskeletal components. Our results shed light on the hitherto unknown relationships between spatial organization and TRPV1 function in live-cell membranes.  相似文献   

3.
Transient receptor potential channel vanilloid receptor subunit 1 (TRPV1) is a thermosensitive cation channel activated by noxious heat as well as a wide range of chemical stimuli. Although ATP by itself does not directly activate TRPV1, it was shown that intracellular ATP increases its activity by directly interacting with the Walker A motif residing on the C-terminus of TRPV1. In order to identify the amino acid residues that are essential for the binding of ATP to the TRPV1 channel, we performed the following point mutations of the Walker A motif: P732A, D733A, G734A, K735A, D736A, and D737A. Employing bulk fluorescence measurements, namely a TNP-ATP competition assay and FITC labelling and quenching experiments, we identified the key role of the K735 residue in the binding of the nucleotide. Experimental data was interpreted according to our molecular modelling simulations.  相似文献   

4.
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.  相似文献   

5.
The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.  相似文献   

6.
TRPV1 (transient receptor potential vanilloid-1)是配体门控的非选择性阳离子通道,属于瞬时受体电位通道家族,能够被多种物理和化学刺激激活。TRPV1是药物研发的重要靶点之一,其异常刺激和表达与多种疾病的发病机制有关。一直以来,TRPV1因其调节剂优异的镇痛效果而备受关注。2021年诺贝尔生理学奖对温度和触觉感受器研究工作的认可,使TRPV1再一次成为关注的焦点。TRPV1已有20多年的研究基础,但是其门控机制和药物研发仍然是研究的难点。本文从TRPV1的生理功能、门控机制和药物发现的角度出发,综述了TRPV1的表达分布、功能特点和结构特征,重点阐述了3种门控机制及TRPV1调节剂在药物发现上的进展,并对未来的TRPV1药物进行展望。  相似文献   

7.
Transient receptor potential vanilloid 1 (TRPV1) ion channel serves as the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel has also been shown to function as an ionotropic cannabinoid receptor. Despite the solving of high-resolution three-dimensional structures of TRPV1, how endocannabinoids such as anandamide and N-arachidonoyl dopamine bind to and activate this channel remains largely unknown. Here we employed a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking techniques to investigate how the endocannabinoids structurally bind to and open the TRPV1 ion channel. We found that these endocannabinoid ligands bind to the vanilloid-binding pocket of TRPV1 in the “tail-up, head-down” configuration, similar to capsaicin; however, there is a unique interaction with TRPV1 Y512 residue critical for endocannabinoid activation of TRPV1 channels. These data suggest that a differential structural mechanism is involved in TRPV1 activation by endocannabinoids compared with the classic agonist capsaicin.  相似文献   

8.
Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.  相似文献   

9.
Role and regulation of TRP channels in neutrophil granulocytes   总被引:7,自引:0,他引:7  
Heiner I  Eisfeld J  Lückhoff A 《Cell calcium》2003,33(5-6):533-540
Members of the transient receptor potential (TRP) family for which mRNA can be demonstrated in neutrophil granulocytes with RT-PCR include TRPC6 (as only "short" TRP), TRPM2, TRPV1, TRPV2, TRPV5 and TRPV6. When these are analyzed in heterologous overexpression experiments, TRPM2 is the only cation channel with characteristic properties that can be used as fingerprint to provide functional evidence for its expression in neutrophil granulocytes. As cells transfected with TRPM2, neutrophil granulocytes display non-selective cation currents and typical channel activity evoked by intracellular ADP-ribose and NAD. Thus, stimulation of TRPM2 is likely to occur after activation of CD38 (producing ADP-ribose) and during the oxidative burst (enhancing the NAD concentration). This novel mode of cation entry regulation may be of particular importance for the response of granulocytes to chemoattractants. TRPV6 is a likely but not exclusive candidate as subunit of the channels mediating store-operated Ca2+ entry (SOCE). Evidence for SOCE in granulocytes has been presented with the fura-2 technique but not with electrophysiological methods although Ca2+-selective store-operated currents can be demonstrated in HL-60 cells, a cell culture model of neutrophil granulocytes.  相似文献   

10.
There is mounting evidence that the vanilloid (capsaicin) receptor; transient receptor potential channel, vanilloid subfamily member 1 (TRPV1), is subjected to multiple interacting levels of control. The first level is by reversible phosphorylation catalyzed by intrinsic kinases (e.g. protein kinase A and C) and phosphatases (e.g. calcineurin), which plays a pivotal role in receptor sensitization vs. tachyphylaxis. In addition, this mechanism links TRPV1 to intracellular signaling by various important endogenous as well as exogenous substances such as bradykinin, ethanol, nicotin and insulin. It is not clear, however, whether phosphorylation per se is sufficient to liberate TRPV1 under the inhibitory control of phosphatydylinositol-4,5-bisphosphate. The second level of control is by forming TRPV1 heteromers and their association with putative regulatory proteins. The next level of regulation is by subcellular compartmentalization. The membrane form of TRPV1 functions as a nonselective cation channel. On the endoplasmic reticulum, TRPV1 is present in two differentially regulated forms, one of which is inositol triphosphate-dependent whereas the other is not. These three TRPV1 compartments provide a versatile regulation of intracellular Ca(2+) levels. Last, there is a complex and poorly understood regulation of TRPV1 activity via control of gene expression. Factors that downregulate TRPV1 expression include vanilloid treatment and growth factor (notably, nerve growth factor) deprivation. By contrast, TRPV1 appears to be upregulated during inflammatory conditions. Interestingly, following experimental nerve injury and in animal models of diabetic neuropathy TRPV1 is present on neurons that do not normally express TRPV1. Combined, these findings imply an important role for aberrant TRPV1 expression in the development of neuropathic pain and hyperalgesia. In humans, disease-related changes in TRPV1 expression have already been described (e.g. inflammatory bowel disease and irritable bowel syndrome). The mechanisms that regulate TRPV1 gene expression under pathological conditions are unknown but a better understanding of these pathways has obvious implications for rational drug development.  相似文献   

11.
Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.  相似文献   

12.
The transient receptor potential channel TRPV1 is a polymodal nociceptor. It is primarily expressed in dorsal root ganglia and peripheral sensory nerve endings, and to a much lesser extent, in the central nervous system. It has also been implicated in the functional properties of e.g. urinary and bronchial epithelia. TRPV1 has long been under intensive investigation by the pharmaceutical industry as a candidate drug target especially for pain conditions. This review summarizes the current knowledge of the molecular determinants of TRPV1 channel activation by heat, protons and capsaicin. Newly discovered heat and proton activation sites within the pore domain are discussed as well as potential consequences for drug discovery. Polymodal TRPV1 antagonists were found to cause hyperthermia in a species-dependent manner in-vivo, hence the discovery of euthermic compounds with an appropriate modality selectivity profile will be crucial for TRPV1's future as a drug target.  相似文献   

13.
Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.  相似文献   

14.
Patel KN  Liu Q  Meeker S  Undem BJ  Dong X 《PloS one》2011,6(5):e20559
Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt(-/-) mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways.  相似文献   

15.
The transient receptor potential vanilloid 1 (TRPV1) nonselective cationic channel is a polymodal receptor that activates in response to a wide variety of stimuli. To date, little structural information about this channel is available. Here, we used quaternary ammonium ions (QAs) of different sizes in an effort to gain some insight into the nature and dimensions of the pore of TRPV1. We found that all four QAs used, tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium, and tetrapentylammonium, block the TRPV1 channel from the intracellular face of the channel in a voltage-dependent manner, and that block by these molecules occurs with different kinetics, with the bigger molecules becoming slower blockers. We also found that TPrA and the larger QAs can only block the channel in the open state, and that they interfere with the channel's activation gate upon closing, which is observed as a slowing of tail current kinetics. TEA does not interfere with the activation gate, indicating that this molecule can reside in its blocking site even when the channel is closed. The dependence of the rate constants on the size of the blocker suggests a size of around 10 Å for the inner pore of TRPV1 channels.  相似文献   

16.
The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K+ channel beta 2 subunit (Kvβ2), an accessory subunit of voltage-gated K+ channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvβ2 association. Biotinylation assays in the presence of Kvβ2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvβ subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.  相似文献   

17.
Coumarin and its derivatives are fragrant natural compounds isolated from the genus Murraya that are flowering plants widely distributed in East Asia, Australia, and the Pacific Islands. Murraya plants have been widely used as medicinal herbs for relief of pain, such as headache, rheumatic pain, toothache, and snake bites. However, little is known about their analgesic components and the molecular mechanism underlying pain relief. Here, we report the bioassay-guided fractionation and identification of a novel coumarin derivative, named muralatin L, that can specifically activate the nociceptor transient receptor potential vanilloid 1 (TRPV1) channel and reverse the inflammatory pain in mice through channel desensitization. Muralatin L was identified from the active extract of Murraya alata against TRPV1 transiently expressed in HEK-293T cells in fluorescent calcium FlexStation assay. Activation of TRPV1 current by muralatin L and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV1-expressing HEK-293T cells and dorsal root ganglion neurons isolated from mice. Furthermore, muralatin L could reverse inflammatory pain induced by formalin and acetic acid in mice but not in TRPV1 knock-out mice. Taken together, our findings show that muralatin L specifically activates TRPV1 and reverses inflammatory pain, thus highlighting the potential of coumarin derivatives from Murraya plants for pharmaceutical and medicinal applications such as pain therapy.  相似文献   

18.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition, channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure–function data available for TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally, the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides. In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction mediated by Ca2+–calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure.  相似文献   

19.
The transient receptor potential channel TRPV1 is a polymodal nociceptor. It is primarily expressed in dorsal root ganglia and peripheral sensory nerve endings, and to a much lesser extent, in the central nervous system. It has also been implicated in the functional properties of e.g. urinary and bronchial epithelia. TRPV1 has long been under intensive investigation by the pharmaceutical industry as a candidate drug target especially for pain conditions. This review summarizes the current knowledge of the molecular determinants of TRPV1 channel activation by heat, protons and capsaicin. Newly discovered heat and proton activation sites within the pore domain are discussed as well as potential consequences for drug discovery. Polymodal TRPV1 antagonists were found to cause hyperthermia in a species-dependent manner in-vivo, hence the discovery of euthermic compounds with an appropriate modality selectivity profile will be crucial for TRPV1's future as a drug target.  相似文献   

20.
The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号