首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation initiation factor eIF5B promotes GTP-dependent ribosomal subunit joining in the final step of the translation initiation pathway. The protein resembles a chalice with the α-helix H12 forming the stem connecting the GTP-binding domain cup to the domain IV base. Helix H12 has been proposed to function as a rigid lever arm governing domain IV movements in response to nucleotide binding and as a molecular ruler fixing the distance between domain IV and the G domain of the factor. To investigate its function, helix H12 was lengthened or shortened by one or two turns. In addition, six consecutive residues in the helix were substituted by Gly to alter the helical rigidity. Whereas the mutations had minimal impacts on the factor's binding to the ribosome and its GTP binding and hydrolysis activities, shortening the helix by six residues impaired the rate of subunit joining in vitro and both this mutation and the Gly substitution mutation lowered the yield of Met-tRNA(i)(Met) bound to 80S complexes formed in the presence of nonhydrolyzable GTP. Thus, these two mutations, which impair yeast cell growth and enhance ribosome leaky scanning in vivo, impair the rate of formation and stability of the 80S product of subunit joining. These data support the notion that helix H12 functions as a ruler connecting the GTPase center of the ribosome to the P site where Met-tRNA(i)(Met) is bound and that helix H12 rigidity is required to stabilize Met-tRNA(i)(Met) binding.  相似文献   

2.
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.  相似文献   

3.
IF2 is one of three bacterial translation initiation factors that are conserved through all kingdoms of life. It binds the 30S and 50S ribosomal subunits, as well as fMet-tRNAf(Met). After these interactions, fMet-tRNAf(Met) is oriented to the ribosomal P-site where the first amino acid of the nascent polypeptide, formylmethionine, is presented. The C-terminal domain of Bacillus stearothermophilus IF2, which is responsible for recognition and binding of fMet-tRNAf(Met), contains two structured modules. Previously, the solution structure of the most C-terminal module, IF2-C2, has been elucidated by NMR spectroscopy and direct interactions between this subdomain and fMet-tRNAf(Met) were reported. In the present NMR study we have obtained the spectral assignment of the other module of the C-terminal domain (IF2-C1) and determined its solution structure and backbone dynamics. The IF2-C1 core forms a flattened fold consisting of a central four-stranded parallel beta-sheet flanked by three alpha-helices. Although its overall organization resembles that of subdomain III of the archaeal IF2-homolog eIF5B whose crystal structure had previously been reported, some differences of potential functional significance are evident.  相似文献   

4.
Sigma S (sigma(s)) encoded by rpoS in Escherichia coli is a stationary phase specific sigma subunit of the RNA polymerase holoenzyme. Widespread among the E. coli K12 strains is an amber mutation that prematurely terminates sigma(s). These rpoSAm mutants would be expected to show no sigma(s) activity. However, suppressor free rpoSAm mutants retain an intermediate catalase activity, a sigma S controlled function. By analyzing the sequence of the rpoS gene we hypothesize that a 277 amino acids long delta1-53 sigma(s) of about 30 kDa can be translated from an internal secondary translation initiation region (STIR, AGGGAGN11GUG) that is located downstream of the amber codon. By cloning this rpoSAm gene, following the expression, function, and N-terminal sequence of this mutant protein, we report the presence of a functional internal STIR in E. coli rpoS, from where a truncated but nevertheless functional form of sigma(s) can be synthesized.  相似文献   

5.
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.  相似文献   

6.
Bacterial translation initiation factor IF2 is a multidomain protein that is an essential component of a system for ensuring that protein synthesis begins at the correct codon within a messenger RNA. Full-length IF2 from Escherichia coli and seven fragments of the protein were expressed, purified, and characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) methods. Interestingly, resonances of the 6 kD IF2N domain located at the extreme N terminus of IF2 can be clearly identified within the NMR spectra of the full-length 97-kD protein. (15)N NMR relaxation rate data indicate that (1) the IF2N domain is internally well ordered and tumbles in solution in a manner that is independent of the other domains of the IF2 protein, and (2) the IF2N domain is connected to the C-terminal regions of IF2 by a flexible linker. Chemical shifts of resonances within the isolated IF2N domain do not significantly differ from those of the corresponding residues within the context of the full-length 97-kD protein, indicating that IF2N is a structurally independent unit that does not strongly interact with other regions of IF2. CD and NMR data together provide evidence that Domains I-III of IF2 have unstructured and flexible regions as well as substantial helical content; CD data indicate that the helical content of these regions decreases significantly at temperatures above 35 degrees C. The features of structurally well-ordered N- and C-terminal domains connected by a flexible linker with significant helical content are reminiscent of another translation initiation factor, IF3.  相似文献   

7.
The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2β subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2β with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.  相似文献   

8.
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.  相似文献   

9.
Little is known about the molecular mechanics of the late events of translation initiation in eukaryotes. We present a kinetic dissection of the transition from a preinitiation complex after start codon recognition to the final 80S initiation complex. The resulting framework reveals that eukaryotic initiation factor (eIF)5B actually accelerates the rate of ribosomal subunit joining, and this acceleration is influenced by the conformation of the GTPase active site of the factor mediated by the bound nucleotide. eIF1A accelerates joining through its C-terminal interaction with eIF5B, and eIF1A release from the initiating ribosome, which occurs only after subunit joining, is accelerated by GTP hydrolysis by eIF5B. Following subunit joining, GTP hydrolysis by eIF5B alters the conformation of the final initiation complex and clears a path to promote rapid release of eIF1A. Our data, coupled with previous work, indicate that eIF1A is present on the ribosome throughout the entire initiation process and plays key roles at every stage.  相似文献   

10.
The function of initiation factors in and the sequence of events during translation initiation have been intensively studied in Bacteria and Eukaryotes, whereas in Archaea knowledge on these functions/processes is limited. By employing chemical probing, we show that translation initiation factor aIF1 of the model crenarchaeon Sulfolobus solfataricus binds to the same area on the ribosome as the bacterial and eukaryal orthologs. Fluorescence energy transfer assays (FRET) showed that aIF1, like its eukaryotic and bacterial orthologs, has a fidelity function in translation initiation complex formation, and that both aIF1 and aIF1A exert a synergistic effect in stimulating ribosomal association of the Met-tRNAiMet binding factor a/eIF2. However, as in Eukaryotes their effect on a/eIF2 binding appears to be indirect. Moreover, FRET was used to analyze for the first time the sequence of events toward translation initiation complex formation in an archaeal model system. These studies suggested that a/eIF2-GTP binds first to the ribosome and then recruits Met-tRNAiMet, which appears to comply with the operational mode of bacterial IF2, and deviates from the shuttle function of the eukaryotic counterpart eIF2. Thus, despite the resemblance of eIF2 and a/eIF2, recruitment of initiator tRNA to the ribosome is mechanistically different in Pro- and Eukaryotes.  相似文献   

11.
12.
In contrast to canonical mRNAs, translation of leaderless mRNA has been previously reported to continue in the presence of the antibiotic kasugamycin. Here, we have studied the effect of the antibiotic on determinants known to affect translation of leadered and leaderless mRNAs. Kasugamycin did not affect the Shine-Dalgarno (SD)-anti-SD (aSD) interaction or the function of translation initiation factor 3 (IF3). Thus, the preferential translation of leaderless mRNA in the presence of kasugamycin can neither be attributed to an expanding pool of 30S subunits with a "blocked" aSD nor to a lack of action of IF3, which has been shown to discriminate against translation initiation at 5'-terminal start codons. Using toeprinting, we observed that on leaderless mRNA 70S in contrast to 30S translation initiation complexes are comparatively resistant to the antibiotic. These results taken together with the known preference of 70S ribosomes for 5'-terminal AUGs lend support to the hypothesis that translation of leaderless mRNAs may as well proceed via an alternative initiation pathway accomplished by intact 70S ribosomes.  相似文献   

13.
Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNAi into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.  相似文献   

14.
The molecular mechanisms that govern translation initiation to ensure accuracy remain unclear. Here, we provide evidence that the subunit-joining step of initiation is controlled in part by a conformational change in the 1408 region of helix h44. First, chemical probing of 30S initiation complexes formed with either a cognate (AUG) or near-cognate (AUC) start codon shows that an IF1-dependent enhancement at A1408 is reduced in the presence of AUG. This change in reactivity is due to a conformational change rather than loss of IF1, because other portions of the IF1 footprint are unchanged and high concentrations of IF1 fail to diminish the reactivity difference seen at A1408. Second, mutations in h44 such as A1413C stimulate 50S docking and cause reduced reactivity at A1408. Third, streptomycin, which has been shown by Rodnina and coworkers to stimulate 50S docking by reversing the inhibitory effects of IF1, also causes reduced reactivity at A1408. Collectively, these data support a model in which IF1 alters the A1408 region of h44 in a way that makes 50S docking unfavorable, and canonical codon–anticodon pairing in the P site restores h44 to a docking-favorable conformation. We also find that, in the absence of factors, the cognate 30S•AUG•fMet-tRNA ternary complex is >1000-fold more stable than the near-cognate 30S•AUC•fMet-tRNA complex. Hence, the selectivity of ternary complex formation is inherently high, exceeding that of initiation in vivo by more than 10-fold.  相似文献   

15.
Picornavirus Type 1 IRESs comprise five principal domains (dII–dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans‐acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment.  相似文献   

16.
eIF2B is a multisubunit protein that is critical for protein synthesis initiation and its control. It is a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2. eIF2 binds initiator tRNA to ribosomes and promotes mRNA AUG codon recognition. eIF2B is critical for regulation of protein synthesis via a conserved mechanism of phosphorylation of eIF2, which converts eIF2 from a substrate to an inhibitor of eIF2B GEF. In addition, inherited mutations affecting eIF2B subunits cause the fatal disorder leukoencephalopathy with Vanishing White Matter (VWM), also called Childhood Ataxia with Central nervous system Hypomyelination (CACH). Here we review findings which reveal that eIF2B is a decameric protein and also define a new function for the eIF2B. Our results demonstrate that the eIF2Bγ subunit is required for eIF2B to gain access to eIF2•GDP. Specifically it displaces a third translation factor eIF5 (a dual function GAP and GDI) from eIF2•GDP/eIF5 complexes. Thus eIF2B is a GDI displacement factor (or GDF) in addition to its role as a GEF, prompting the redrawing of the eIF2 cycling pathway to incorporate the new steps. In structural studies using mass spectrometry and cross-linking it is shown that eIF2B is a dimer of pentamers and so is twice as large as previously thought. A binding site for GTP on eIF2B was also found, raising further questions concerning the mechanism of nucleotide exchange. The implications of these findings for eIF2B function and for VWM/CACH disease are discussed.  相似文献   

17.
We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine-Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G.  相似文献   

18.
Qin D  Abdi NM  Fredrick K 《RNA (New York, N.Y.)》2007,13(12):2348-2355
In bacteria, initiation of translation is kinetically controlled by factors IF1, IF2, and IF3, which work in conjunction with the 30S subunit to ensure accurate selection of the initiator tRNA (fMet-tRNA(fMet)) and the start codon. Here, we show that mutations G1338A and A790G of 16S rRNA decrease initiation fidelity in vivo and do so in distinct ways. Mutation G1338A increases the affinity of tRNA(fMet) for the 30S subunit, suggesting that G1338 normally forms a suboptimal Type II interaction with fMet-tRNA(fMet). By stabilizing fMet-tRNA(fMet) in the preinitiation complex, G1338A may partially compensate for mismatches in the codon-anti-codon helix and thereby increase spurious initiation. Unlike G1338A, A790G decreases the affinity of IF3 for the 30S subunit. This may indirectly stabilize fMet-tRNA(fMet) in the preinitiation complex and/or promote premature docking of the 50S subunit, resulting in increased levels of spurious initiation.  相似文献   

19.
In Eukarya and Archaea, translation initiation factor 2 (eIF2/aIF2), which contains three subunits (α, β, and γ), is pivotal for binding of charged initiator tRNA to the small ribosomal subunit. The crystal structure of the full-sized heterotrimeric aIF2 from Sulfolobus solfataricus in the nucleotide-free form has been determined at 2.8-Å resolution. Superposition of four molecules in the asymmetric unit of the crystal and the comparison of the obtained structures with the known structures of the aIF2αγ and aIF2βγ heterodimers revealed high conformational flexibility in the α- and β-subunits. In fact, the full-sized aIF2 consists of a rigid central part, formed by the γ-subunit, domain 3 of the α-subunit, and the N-terminal α-helix of the β-subunit, and two mobile “wings,” formed by domains 1 and 2 of the α-subunit, the central part, and the zinc-binding domain of the β-subunit. High structural flexibility of the wings is probably required for interaction of aIF2 with the small ribosomal subunit. Comparative analysis of all known structures of the γ-subunit alone and within the heterodimers and heterotrimers in nucleotide-bound and nucleotide-free states shows that the conformations of switch 1 and switch 2 do not correlate with the assembly or nucleotide states of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号