首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antigenic phenotype of individual PHA-induced T lymphocyte colonies was studied with a direct immunofluorescence technique using fluorescein-labeled anti-Leu-2a and anti-Leu-3a antibodies. Of the colonies grown from mononuclear peripheral blood cells 85% were Leu-3a+ (inducer/helper phenotype), 12% were Leu-2a+ (suppressor/cytotoxic phenotype), and 3% contained equal numbers of Leu-2a+ and Leu-3a+ cells. Fluorescence-activated cell sorter (FACS) separated T-cell subsets showed that Leu-2a+ cells and Leu-3a+ cells form exclusively Leu-2a+ and Leu-3a+ colonies, respectively. Leu-3a+ cells formed colonies in both the absence and presence of conditioned medium (PHA-CM), whereas colony formation by Leu-2a+ cells was absolutely dependent on PHA-CM. Mixing experiments with FACS-separated T-cell subsets showed that Leu-2a+ cells inhibit colony formation by Leu-3a+ cells in a cell dose-dependent manner both in the presence and absence of PHA-CM. Phenotype analysis of individual colonies from mixing experiments strongly suggested monoclonal proliferation in the present colony assay system. The majority of expanded T-cell colonies showed helper activity in a reverse hemolytic plaque-forming B-cell assay, although to a lesser degree as compared to that of freshly isolated T lymphocytes.  相似文献   

2.
Monoclonal antibodies reactive with T cells, T cell subsets, B cells, monocytes, and natural killer cells were used to characterize the nature of mucosal lymphocytes in the human small intestine by application of the immunoperoxidase technique to tissue sections for light and electron microscopic examination. In addition, for comparison, peripheral blood mononuclear cells (PBL) were studied by immunoelectron microscopy. Most of the intraepithelial lymphocytes (IEL) were T cells (Leu-1+, T3+) and expressed the phenotype associated with cytotoxic/suppressor T cells (Leu-2a+, T8+). In contrast, a majority of T lymphocytes in the lamina propria expressed the phenotype associated with helper/inducer T cells (Leu-3a+, T4+). These observations confirm and extend the findings previously reported. In addition, a small number of cells in the lamina propria with the ultrastructural features of macrophages were found to react with anti-Leu-3a and anti-T4 antibodies. Although many IEL contained cytoplasmic granules and had ultrastructural features similar to those of circulating granular lymphocytes, none of these cells reacted with anti-Leu-7 (HNK-1), anti-T10, or anti-M1 antibodies. This suggests that IEL may not be related to circulating large granular lymphocytes, which are Leu-7+, T10+, M1+ and are associated with natural killer activity. Not only Leu-7+ PBL, but T8+, T4+, or T3+ mucosal lymphocytes or PBL also may contain cytoplasmic granules. Therefore, the cytoplasmic granules are not restricted to one cell type, in particular, to Leu-7+ cells.  相似文献   

3.
We showed previously that fresh Leu-2+ T cells respond to autologous antigen-primed Leu-3+ T cells by proliferation and differentiation into suppressor T cells (Ts) that specifically inhibit the response of fresh Leu-3+ cells to the original priming antigen. This study was undertaken to characterize the role of various cell surface molecules expressed by antigen-primed Leu-3+ cells in their activation of Leu-2+ Ts cells. Alloactivated Leu-3+ blasts were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct antigens on human lymphoid cells, and then were examined for their functional effects on fresh autologous T cells. Prior treatment of Leu-3+ blasts with anti-Leu-4 or anti-HLA-A,B,C framework antibodies, but not with anti-Leu-1, anti-Leu-3, anti-Leu-5, or anti-HLA-DR framework-specific antibodies, not only blocked proliferation of fresh Leu-2+ cells, it also prevented their differentiation into Ts cells. Furthermore, after their activation by Leu-3+ blasts, Leu-2+ Ts cells inhibited the response of fresh Leu-3+ cells from only those individuals who shared HLA-A,B phenotypes with suppressor-effector cells. These results suggest that both the inductive and effector phases of suppression involve dual recognition of autologous class I MHC molecules and structures associated with the Leu-4 (T3) molecule on the surface of antigen-reactive Leu-3+ cells.  相似文献   

4.
Induction of CD4 suppressor T cells with anti-Leu-8 antibody   总被引:6,自引:0,他引:6  
To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody.  相似文献   

5.
Regulation of the immune response in man is dependent on interactions between cells of helper/inducer (Leu-3+/T4+) lineage and cells of suppressor/cytotoxic (Leu-2+/T8+) lineage. By using the mixed leukocyte reaction (MLR) as a model system, we have shown previously that alloantigen-primed Leu-3+ cells induce autologous Leu-2+ cells to differentiate into suppressor T cells that specifically inhibit the response of fresh T cells to the original allogeneic stimulator cells. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of Leu-3+ cells distinguished from one another on the basis of their binding or lack of binding to monoclonal anti-Leu-8 antibody. Although both Leu-3+,8- and Leu-3+,8+ T cells proliferated in allogeneic MLR, alloactivated Leu-3+,8+ cells alone induced proliferation and differentiation of Leu-2+ suppressor cells. Leu-3+,8+ cells also induced Leu-3+,8- cells to proliferate, and following their activation in this manner, such autoactivated Leu-3+,8- cells augmented the differentiation of Leu-2+ suppressor cells, but only in the presence of alloactivated Leu-3+,8+ cells. Furthermore, this effect, like the suppressor effect, was specific for the inducer cells, and thus indirectly for the HLA-DR antigens of the original allogeneic stimulator cells as well. These results indicate that alloantigen-primed Leu-3+,8+ cells not only activate specific Leu-2+ suppressor cells but also activate specific Leu-3+,8- suppressor-amplifier cells, and in combination, these cells exert potent feedback inhibition of MLR.  相似文献   

6.
Previous studies have shown that monoclonal anti-Leu-8 antibody identifies functionally distinct subpopulations within both the Leu-2 (T8+) and Leu-3 (T4+) lineages of human T lymphocytes. We now report in detail on the tissue distribution of the Leu-8 antigen and on extensive functional studies of T cells subsets distinguished by their expression or lack of expression of this marker. Leu-8 is present on a wide variety of hematologic cells, including granulocytes, T and B lymphocytes, monocytes, and null or NK cells. Within lymph nodes and tonsils, Leu-8 is absent from both B and T cells within germinal centers but is present on nearly all paracortical lymphocytes. Leu-8 is present on most but not all EBV-transformed B cell lines, reflecting its presence on a subset of normal peripheral blood B cells. None of six malignant T cell lines tested were Leu-8+, whereas most circulating T cells are Leu-8+. Although standard immunoprecipitation techniques failed to demonstrate any specific bands on SDS polyacrylamide gels, the antigenic determinant recognized by anti-Leu-8 is protein or protein-associated, because brief treatment of target cells with pronase abrogated binding of anti-Leu-8. Both Leu-3+8+ and Leu-3+8- cells proliferated in response to several soluble antigens and to autologous and allogeneic non-T cells. Nonetheless, nearly all of the helper T cells for PWM- and AMLR-induced PFC were contained within the Leu3+8- subset. Optimal suppression of the PWM-induced PFC response required both Leu-2+8+ and Leu-2+8- cells, and irradiation of either subset with 3000 R abrogated the capacity of the recombined subsets to effect suppression. In contrast to help for B cell differentiation, both Leu-3+8+ and Leu-3+8- cells were capable of amplifying the development of allospecific T killer cells; precursor and effector T killer cells could be found within both Leu-2+8+ and Leu-2+8- subpopulations. The correlation between Leu-8 phenotype and selected immune functions of T cells (and B cells; see companion paper) indicates that anti-Leu-8 distinguishes important immunoregulatory T and B lymphocyte subsets in man.  相似文献   

7.
The regulatory function of peripheral blood CD4 T cells correlates with the presence or absence of the membrane glycoprotein recognized by anti-Leu-8 antibody; CD4,Leu8- T cells help Ig synthesis and CD4,Leu-8+ T cells suppress Ig synthesis. In contrast to CD4 T cells from the peripheral blood and organized gut-associated lymphoid tissues, intestinal lamina propria CD4 T cells were found to have diminished expression of the Leu-8 Ag. Therefore, studies were performed to determine whether the decreased expression of the Leu-8 Ag on lamina propria CD4 T cells correlates with a difference in the ability of peripheral blood and lamina propria CD4 T cells to regulate PWM-stimulated Ig synthesis. At high T cell to non-T cell ratios, the helper function of lamina propria CD4 T cells was significantly higher than that of peripheral blood CD4 T cells. When CD4 T cells were incubated with anti-Leu-8 antibody, the suppressor function of peripheral blood CD4 T cells was increased, but lamina propria CD4 T cells did not suppress Ig synthesis. No difference was found between the helper function of CD4,Leu-8- T cells and the suppressor function of CD4, Leu-8+ T cells isolated from either the peripheral blood or the lamina propria. Thus, the difference in the regulatory function of CD4 T cells from the peripheral blood and the lamina propria is due to the quantitative difference in CD4,Leu-8+ T cells in these sites. Consequently, the intestinal lamina propria is a site enriched in CD4,Leu-8- T cells which predominantly mediate help for Ig synthesis.  相似文献   

8.
The functional properties of cytotoxic lymphocytes from patients with Vogt-Koyanagi-Harada disease ( VKH ) specific for human melanoma cells (P-36 melanoma cell line established from a patient with malignant melanoma) were investigated by using monoclonal antibodies specific for human T cell subsets. Peripheral blood lymphocytes (PBL) from patients with VKH showed significant cytotoxic activity against the P-36 (SK-MEL-28) human melanoma cell line, but not against a human cervical carcinoma of the uterus cell line (HeLa-S3 cell line) or against a mouse melanoma cell line (B-16 cell line) originating from a C57BL/6 strain mouse or against the EL-4 mouse lymphoma cell line from a C57BL/6 mouse. The cytotoxic activity of the patients' PBL against the P-36 melanoma cell line was markedly reduced by pretreatment of the PBL with monoclonal anti-human Leu-1 antibody plus rabbit complement, but it was reduced to much less extent by pretreatment with either monoclonal anti-human Leu-2a or Leu-3a antibody plus rabbit complement. The specific cytotoxic activity of the patients' PBL against the P-36 human melanoma cell line is, therefore, mediated by T cells bearing Leu-1+ Leu-2a+ or Leu-1+ Leu-3a+ antigens. Furthermore, the cytotoxic activity was shown to be blocked not only by anti-Leu-2a antibody specific to human cytotoxic/suppressor T cells but also unexpectedly by anti-Leu-3a antibody which has previously been considered to be specific to human inducer/helper T cells. The results of this study suggest that at least two distinct subpopulations of cytotoxic T cells specific for P-36 human melanoma cells are present in the peripheral blood of VKH patients. These cytotoxic T cells have different surface antigens, Leu-2a and Leu-3a.  相似文献   

9.
Monoclonal antibodies against the CD3 antigen and certain lectins can induce interleukin 2 dependent antigen-specific T cell clones to mediate non-antigen specific cytotoxicity. On the basis of this observation, we predicted that it may be possible to identify cytotoxic T lymphocytes (CTL) in peripheral blood without knowing the antigen specificity of these in vivo primed CTL. By using this strategy, peripheral blood lymphocytes were separated into low and high-density fractions on Percoll gradients and were tested for cytotoxic activity in the presence or absence of concanavalin A (Con A) or anti-Leu-4 antibody. Lectin-dependent cellular cytotoxicity (LDCC) and anti-CD3 induced cytotoxicity against both natural killer (NK)-insensitive and NK-sensitive targets were exclusively mediated by low-density CD3+ T lymphocytes. Additional studies indicated that low-density CD3+ T lymphocytes co-expressing Leu-7 antigen preferentially mediated this activity, although in some individuals, significant activity was also observed in the low-density T cells lacking Leu-7. In contrast, high-density CD3+ T lymphocytes and CD16+ (Leu-11+) NK cells (both Leu-7 and Leu-7+) did not mediate nonantigen-specific cytotoxicity under these conditions. The finding that NK cell-mediated cytotoxicity was unaffected by these lectins refutes the hypothesis that lectin-dependent cellular cytotoxicity is simply a result of effector and target agglutination. T cell-mediated cytotoxicity was both lectin and antibody specific. Phytohemagglutinin, Con A, and pokeweed mitogen induced cytolytic activity in the Leu-7+ T cells, whereas wheat germ agglutinin did not. Of the antibodies against T cell-associated differentiation antigens (anti-Leu-2,3,4, and 5), only anti-Leu-4 induced cytotoxicity. This anti-CD3-induced cytotoxicity was essentially completely inhibited by the presence of anti-LFA-1 or anti-CD2 monoclonal antibodies, implicating these molecules in the triggering process. A proportion of the CD3+, Leu-7+ CTL expressed HLA-DR antigens, indicating possible in vivo activation. Because previous clinical studies have indicated that lymphocytes with this phenotype may be elevated in clinical situations associated with immunosuppression and chronic viral infection, this unique subset of CD3+ T lymphocytes may represent a population of in vivo primed CTL possibly against viral antigens.  相似文献   

10.
When cultured with autologous antigen-primed Leu-3+ lymphoblasts, Leu-2+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the responses of fresh autologous Leu-3+ cells to the priming antigen. We have shown previously that the Leu-4/T3 (CD-3) molecular complex and HLA-A,B molecules on the surface of Leu-3+ inducer blasts are recognized by Leu-2+ Ts during their differentiation. This study examines the role of various cell surface molecules expressed by Leu-2+ Ts during the inductive and effector phases of suppression. Leu-2+ cells were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct human lymphoid antigens either before or after their activation with alloantigen-primed Leu-3+ blasts. Antibodies to Leu-2/T8 (CD-8) and lymphocyte function-associated antigen-1 (LFA-1) (CDw-18) molecules inhibited not only the generation but also the effector function of Leu-2+ Ts. Although antibodies to Leu-4/T3 (CD-3) and Leu-5/T11 (CD-2) molecules caused profound inhibition of the activation of Ts, these antibodies failed to inhibit the effector function of Ts. On the contrary, anti-Leu-4 antibody consistently augmented the suppressor effect of Ts. Antibodies directed against Leu-1/T1 (CD-5), Leu-3/T4 (CD-4), LFA-3, and class I (HLA-A,B,C) and class II (HLA-DR,DQ) major histocompatibility complex molecules had no effect on either the generation or the effector function of Ts. These results suggest the involvement of Leu-2/T8 (CD-8), Leu-4/T3 (CD-3), Leu-5/T11 (CD-2), and LFA-1 (CDw-18) molecules on the surfaces of Leu-2+ cells in the activation and effector functions of Ts.  相似文献   

11.
Anti-Leu-4 is a murine monoclonal antibody that defines a molecule of 20,000 to 25,000 daltons present on all mature T lymphocytes in man. When cultured in the presence of 10 to 1000 ng/ml anti-Leu-4, the T cells of most individuals proliferate with peak responses on the third day of culture. T cells of both helper and suppressor lineages proliferate, but only in the presence of monocytes. Approximately 40% of individuals tested responded weakly or not at all to anti-Leu-4, despite normal responses to other stimuli. The variation in responsiveness between individuals could not be explained by differences in Leu-4 antigen density on the surface of T cells, differences in the rate of Leu-4 antigen modulation, or structural differences in the Leu-4 molecule as defined by the method of two-dimensional polyacrylamide gel electrophoresis. In the presence of monocytes from high responders, the T cells from low responders proliferated vigorously to anti-Leu-4, whereas monocytes from low responders failed to support proliferation by high responder T cells. On the other hand, low responder monocytes did not prevent T cells from proliferating in the presence of high responder monocytes. These results suggest that the failure of some individuals to respond to anti-Leu-4 is due to the absence or dysfunction of an essential monocyte population.  相似文献   

12.
We have shown previously that monoclonal antibodies to the Leu-2 and Leu-3 T cell antigens block the response of their respective subsets in allogeneic MLR. The present study was an effort to explore the mechanism of inhibition and to determine if anti-Leu-2 and anti-Leu-3 antibodies affect the responses to stimuli in addition to alloantigens. Our results indicate that antibodies to Leu-2 and Leu-3 have profound inhibitory effects on proliferation by their respective T cell subsets responding to a variety of stimuli, including specific soluble antigens and alloantigen. This effect was characterized by the following features: a) For optimal inhibition of proliferation, antibody must be present at the onset of antigenic stimulation. b) Inhibition is augmented by increasing the concentration of antibody or decreasing the concentration of antigen. c) Fab fragments of both anti-Leu-2a and anti-Leu-3a antibodies also block proliferation. In addition to their effects on T cell proliferation, anti-Leu-3 antibody blocked T cell-dependent lg synthesis induced in MLR, and anti-Leu-2 antibody prevented the induction, in vitro, of Leu-2+3- suppressor cells of lg synthesis. Taken together, these results suggest that antibodies to antigenic determinants on the Leu-2 and Leu-3 molecules competitively block segments of these structures that bind to alloantigen or nominal antigen. On the other hand, anti-Leu-2a antibody failed to block suppression of the MLR by in vivo activated, antigen-specific Leu-2+3- suppressor cells, which suggests that the Leu-2a epitope does not transmit antigen-specific signals from these differentiated suppressor T cells.  相似文献   

13.
Human T lymphocytes and monocytes bear the same Leu-3(T4) antigen   总被引:15,自引:0,他引:15  
An analysis of the cellular distribution, biosynthesis, and structure of the human T lymphocyte antigen Leu-3(T4) was performed. By using a sensitive ELISA as well as FACS analysis, relative quantities of the Leu-3(T4) antigen from whole cell lysates and from cell surfaces of six cell lines were determined. The T-T hybrid cell line 255.88, and the monocyte/macrophage cell line U937, proved to be high producers of the antigen and were chosen for additional investigation. The Leu-3(T4) antigens from the T lymphocyte cell line and the monocyte/macrophage cell were shown to be identical by SDS-PAGE. Leu-3(T4) was a polypeptide of 55,000 AMW under reducing conditions, and 63,000 AMW under nonreducing conditions. In the 255.88 cell line, a second band of 41,000 AMW was associated with the true Leu-3(T4) molecule. The 55,000 AMW Leu-3(T4) molecule was shown to possess a high mannose sugar side chain, and to contain few accessible tyrosine residues. These studies demonstrate that human T lymphocytes and monocytes produce and process similar molecules that react with the anti-Leu-3(T4) monoclonal antibody. They also characterize this important associative antigen recognition structure and suggest that cells other than the T lymphocyte may be targets for the retrovirus HTLV-III.  相似文献   

14.
The reactivity of human cord blood lymphocytes was assessed against a panel of monoclonal antibodies (MoAb). The mean proportion of OKT3+ cells (pan-T) was significantly lower in cord blood (52 +/- 13.8%; mean +/- SD) compared with that of adult blood (75 +/- 8.9%) and paralleled well with the E-rosette-forming capacity (50 +/- 16.3%). Both the proportions of OKT4+ cells (helper/inducer phenotype) and of OKT8+ cells (suppressor/cytotoxic phenotype) were significantly reduced in cord blood (43 +/- 11.8% vs 50.3 +/- 7.4% and 20 +/- 10.3% vs 25.6 +/- 6.0%, respectively), while the overall OKT4/OKT8 ratio was increased compared with adult blood (2.87 +/- 1.83 vs 2.04 +/- 0.61). Unlike adult blood, in 30 of the 35 samples of cord blood an overlap was observed between the total proportion of OKT4+ and OKT8+ cells (65 +/- 15.2%) and that of OKT3+ cells (52 +/- 14.3%). Although small numbers of cells coexpressing both antigens were occasionally found, double-staining analysis showed that the overlap in cord blood was mostly due to an expanded proportion of OKT3 (Leu-4)-/OKT8 (Leu-2)+ cells. Relevant proportions of OKT6+ (common thymocyte antigen) and OKT10+ (thymocytes, activated T cells, precursor cells) cells were found in cord blood as opposed to adult blood (10.8 +/- 8.6% vs 0.6 +/- 0.6% and 67 +/- 18.0% vs 8 +/- 2.1%, respectively), while terminal deoxynucleotidyl transferase-positive cells were observed only in two samples of cord blood. A small proportion of T cells (E-rosette+) reacted with the MoAb OKIa1 (HLA-DR). Finally, the proportion of cord blood cells recognized by the MoAb Leu-7 (HNK-1 clone) was almost negligible compared with adult blood (2.8 +/- 2.4% vs 15 +/- 7.5%). These data confirm the immaturity and heterogeneity of cord blood lymphocytes and demonstrate the presence at birth of circulating lymphocytes which express a surface phenotype reminiscent of that found in the late stages of intrathymic differentiation and in some human T-cell leukemias. Human cord blood may thus represent a suitable model for the study of the differentiation pathway of normal and pathological T-cells in humans.  相似文献   

15.
The Leu-2 antigen is expressed on a subpopulation of human T cells that perform suppressor and cytotoxic functions. In addition, this antigen is also present on a portion of cells with morphologic characteristics of granular lymphocytes. Although both Leu-2+ cells and granular lymphocytes have been shown to suppress B cell differentiation, the interrelationship of these two suppressor populations has not previously been fully characterized. We recently produced a monoclonal antibody, termed D12 (anti-Leu-15), which reacts with a variety of cell types, including a subpopulation of Leu-2+ cells. Previous studies have indicated that the Leu-2+ cells that suppress T cell proliferative responses express the Leu-2+15+ phenotype, whereas the precursor and effector cytotoxic T cells that recognize class I major histocompatibility antigens are Leu-2+15- lymphocytes. For this report, we used the anti-Leu-2 and anti-Leu-15 monoclonal antibodies and fluorescence-activated cell sorter techniques to characterize the E+ cells that suppress PWM-induced B cell differentiation. These studies indicate that the vast majority of Leu-2+ cells that suppress this T cell-dependent B cell response have the Leu-2+15+ phenotype. Furthermore, when the morphologic and cytochemical characteristics of these Leu-2+15+ cells were studied, virtually all of these cells were granular lymphocytes. Most of the Leu-2+15+ suppressor cells co-expressed the HNK-1 (Leu-7) antigen, which is detected only on granular lymphocytes. In contrast, virtually none of the Leu-2+15+ granular lymphocytes expressed Fc receptors for IgG molecules. These data indicate that the Leu-2+ cells that suppress PWM-induced B cell differentiation are Leu-2+15+ (and predominantly Leu-7+) granular lymphocytes that do not express Fc receptors. The implications of these observations concerning the relationship of human Leu-2+ suppressor cells to murine Ly-2+ cells and the lineage of granular lymphocytes are discussed.  相似文献   

16.
Five patients with rheumatoid arthritis (RA), who were treated by lymphocyte depletion by using thoracic duct drainage (TDD), provided an opportunity to characterize the phenotype and function of their recirculating lymphocytes. We found that: a) thoracic duct lymphocytes (TDL) were similar in their proportion of T cells (83% +/- 6 OKT3+), OKT4+ subset (65% +/- 8), and OKT8+ subset (22% +/- 6) to peripheral blood lymphocytes (PBL): b) fewer natural killer-like cells were present in TDL (5% +/- 4 Leu-7+; 2% +/- 2 Leu-11+: 8% +/- 2 OKM -1+) than in PBL (20% +/- 10 Leu-7+: 11% +/- 6 Leu-11+; 18% +/- 5 OKM -1) (p less than 0.01); c) TDL differed from synovial fluid lymphocytes ( SFL ) and synovial membrane lymphocytes ( SML ) in that TDL lacked a high percentage of activated lymphocytes (T cells bearing Ia antigen, OKT10 , and transferrin receptor): d) immature T cells (expressing either OKT6 antigen or reactive with peanut agglutinin) were not found in TDL even late in the course of TDD: and e) in vitro functional studies demonstrated that TDL were similar to PBL in their ability to synthesize immunoglobulin after mitogen stimulation and to generate cytotoxic T lymphocytes capable of lysing autologous EBV-transformed B cells. However, natural killer activity, as measured by lysis of K562 cells was significantly lower in TDL than PBL (p less than 0.05). These results demonstrate that natural killer cells defined by phenotype and function are excluded from thoracic duct lymph and thus have a circulation pattern different from most T cells.  相似文献   

17.
The phenotype of T lymphocyte subsets present in renal biopsies showing acute cellular allograft rejection in six patients on cyclosporine have been characterized in situ by immunoperoxidase staining, and after expansion in vitro in interleukin 2 (IL-2) by two-color flow cytometry, sorting, and functional analysis. After 8 to 42 days in organ culture, both Leu-3+ (CD4) and Leu-2+ (CD8) subsets were found in each culture, in a ratio that varied from 0.2 to 5.0, which was not significantly different than the results of in situ immunoperoxidase staining of the uncultured biopsy. The cultured cells were almost all Leu-4+ (CD3) T cells (89% +/- 4), which expressed the activation markers DR (82% +/- 6) and the IL 2 (CD25) receptor (15% +/- 4). The Leu-3+ cells were largely Leu-8- (90% +/- 6), whereas a minority of the Leu-2+ cells were Leu-15+ (CD11) (26% +/- 4). Only a small fraction of the Leu-2+ cells stained for Leu-7 (8% +/- 6). Functional analysis of FACS-purified Leu-2-3+ and Leu-2+3- populations indicated that both subsets proliferated in response to graft donor antigens in a mixed lymphocyte reaction (MLR) and produced IL 2. Only the Leu-2+3- population demonstrated donor-specific cytotoxic activity. A minor subpopulation in each culture were both Leu-3+ and Leu-2+ (2.0%). Leu-2+3+ cells from one biopsy were purified to homogeneity (99.8%), and were found to express the T cell antigen receptor complex Ti/CD3 (WT-31+, Leu-4+), but not the common thymocyte antigen CD1 (OKT6). The Leu-2+3+ cells neither responded in the MLR, nor showed any cytotoxic capacity. The Leu-2+3+ cells were capable of IL 2 but not interferon-gamma production. None of the purified cultures demonstrated NK activity. A subset of the purified Leu-2+3+ cells lost Leu-2+ during 1 to 3 wk in culture, and became Leu-2-3+. These studies provide evidence that the cells that infiltrate renal allografts during rejection include alloproliferative, lymphokine-producing cells of both Leu-2+ and Leu-3+ subsets. The Leu-2+3- cells are also highly cytotoxic against donor lymphocytes, indicating the presence of helper independent cytotoxic T cells. A minor population of Leu-2+3+ T cells that do not express donor specific function was also identified.  相似文献   

18.
Two new monoclonal antibodies (termed 2D2 and D12) have been used to identify and to analyze phenotypically distinct subpopulations of human T cells. The 2D2 antibody recognized an antigenic determinant closely related, if not identical, to that reactive with the anti-Leu-2 monoclonal antibody. The D12 antibody reacted with a variety of cell types, which included a subpopulation of Leu-2+ (2D2+) T cells. These antibodies were used to isolate four phenotypically distinct T cell populations by sequential cell sorter techniques. Functional analyses demonstrated that the 2D2+D12+ subset was unique in its ability to suppress the antigen-induced proliferation of T cells. These cells also suppressed the proliferative responses of other T cell subsets stimulated with mitogens. Pretreatment of 2D2+D12+ T cells with mitomycin C before culture abrogated the suppressor cell activity of these cells. We propose that the cells within the Leu-2+ cytotoxic/suppressor T cell subpopulation that suppress T cell proliferation are phenotypically distinct and express the 2D2+D12+ membrane antigenic phenotype.  相似文献   

19.
Patients with myeloma have a depressed capacity to respond to antigenic challenge. Studies in this laboratory have previously described an unclassified lymphoid cell which binds human erythrocytes coated with human immunoglobulin G (IgG) anti-D antibody (EA) as important in the inhibition of Ig synthesis in myeloma patients. Using monoclonal antibodies, two-color fluorescence studies, and flow cytometry, we characterized this EA cell as a Leu-1+ (cluster designation (CD) 5), Leu-12+ (CD 19), Leu-16+ (CD 20), B2+ (CD 21), Leu-14+ (CD 22), and HLA-DR+ B cell. The cell was negative for antibodies to Leu-2 (CD 8), Leu-3 (CD 4), Leu-4 (CD 3), Leu-5 (CD 2), Leu-7, Leu-8, Leu-11 (CD 16), Leu-M1 (CD 15), Leu-M3, and CALLA (CD 10). This profile is consistent with a Leu-1+ B cell and excludes a T cell, natural killer cell, and monocyte. Comparison of the relative role of these cells to the role of monocytes in the suppression of pokeweed mitogen-stimulated Ig synthesis was determined in serial studies on 19 myeloma patients. The mean (+/- SEM) percentage of inhibition of Ig synthesis by monocytes from stage I myeloma patients was 14 +/- 2.2%, from stage II patients was 37 +/- 3.5%, and from stage III patients was 51 +/- 4.7%. Inhibition of Ig synthesis by Leu-1+ EA cells was 46 +/- 1.5%, 48 +/- 1.6%, and 43 +/- 3.7% in stage I, II, and III patients, respectively. Immunosuppressive B cells are an important component of inhibition of Ig synthesis in the immunodeficiency of myeloma.  相似文献   

20.
When cultured with native or recombinant human interleukin 2 (IL 2), human peripheral blood non-adherent mononuclear cells (NAMNC) acquire the ability to lyse both NK-sensitive and NK-resistant tumor target cells. The development of these IL 2-activated killer (IAK) cells, also known as LAK, is observed in the absence of exogenous antigen or mitogen. This study describes the ability of various subpopulations of human peripheral blood NAMNC with defined surface phenotype to generate the IAK activity. Human NAMNC were separated into various subpopulations on the basis of the ability to bind monoclonal antibodies, activated with IL 2, and were examined for the cytolytic effect on various tumor target cells. Although CD16+ (Leu-11+) NK cells from NAMNC could become IAK cells when cultured with IL 2, removal of these cells from NAMNC had no effect on the latter's ability to generate the IAK effect. When CD16- NAMNC were separated into CD2+ E rosette-forming T cells (ERFC) and CD2- non-T (non-ERFC) subpopulations, both subpopulations generated the IAK activity. The ability of monoclonal antibody-defined subpopulations of T and non-T cells to generate IAK cells was then examined. Both CD4+ and CD8+ subsets isolated by either positive or negative selection generated the IAK activity. Similarly, CD20+ (B1+) B cells and CD20- non-T (null) cells developed into IAK cells when cultured with IL 2. In contrast, Leu-7+ T cells failed to generate the IAK activity. CD4+ and CD8+ subsets were additionally separated into narrower subpopulations by using monoclonal antibodies anti-Leu-8 and 9.3 respectively, and were examined for their ability to generate IAK cells. Precursors of IAK cells were derived from each of the four: CD4+, Leu-8+ (inducer), CD4+, Leu-8- (helper/amplifier), CD8+, 9.3+ (cytolytic), and CD8+, 9.3- (suppressor) subpopulations of T cells. Thus, the IAK activity appears to be derived from phenotypically heterogeneous and otherwise functionally diverse human lymphoid cells and is not confined to any single subpopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号