首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The similarity of sex pili mediated by F factors and R(fi(+)) factors and the ability of R(fi(+)) factors to control by repression the functioning of pilus genes encoded by the F factor suggested that F factors and R(fi(+)) factors are closely related. Further comparisons of the episomal properties of F factors and R(fi(+)) factors, however, indicated many differences. F factors contain information for a restriction system for phages phiII and T7. Cells containing R factors are sensitive to these phages. Furthermore, R(fi(+)) factors do not repress the F factor phiII restriction system in cells containing both an R(fi(+)) factor and an F factor. R factors and F factors are heteroimmune episomes. In addition, an R(fi(+)) factor in cells containing both an R factor and an F factor does not fully repress the expression of F-factor immunity to an incoming second F factor. R-factor and F-factor replication systems are not identical. Wild-type F-factor replication genes will complement the mutant F(ts114)lac(+) replication genes in cells containing two F factors. The F(ts114)lac(+) episome is retained when these cells are grown at 42 C; however, cells containing an R(fi(+)) factor and F(ts114)lac(+) lose the F(ts114)lac(+) when grown at 42 C, at the same rate as cells containing only the F(ts114)lac(+). The replication system of the R(fi(+)) factor will not complement the mutant F(ts114)lac(+) replication system.  相似文献   

2.
T E Lobanok 《Genetika》1975,11(5):119-126
The compatibility of four wild type fi+R factors to R1 factor, a representative of the FII compatibility group of F-like class of the plasmids was studied. Two of them (R448 and R459) were incompatible to the R1 factor at selective for R448 and R459 donors conditions. The recipient R1 factor elimination apparently takes place at the first generations of conjugants. The compatibility of these R plasmids to R1 is possible at selective for donor and recipient plasmids conditions. R459 and R1 factors were transfered to Escherichia coli W945 simultaneously and recombination between them was suggested. B211 and R215 factors are compatible to R1 factor and their coexistence with the last is stable despite whether conjugants were selected on one or two R plasmids principle. Further conjugants transfer R211 and R215 only, but not R1. It is concluded that R factors No 448 and No 459 are of FII group compatibility. R211 and R215 factors group compatibility is still unknown.  相似文献   

3.
Superinfection immunity is found in the conjugal transfer of R factors between two fi(+) R factors and between two fi(-) R factors (fi = fertility inhibition), as we reported previously. In contrast, no reduction in the frequencies of transduction of an fi(+) R factor 222 was caused by the presence of fi(+) R factors in the recipients in transduction systems with phage P1kc in Escherichia coli K-12 and with phage P22 in Salmonella typhimurium LT-2. The absence of superinfection immunity in transduction may be due to the difference in the route of entry of the R factor. The frequencies of transduction of an fi(+) R factor were reduced, although slightly, by the presence of fi(-) R factors in the recipients. This reduction is probably due to host-controlled restriction of the entering fi(+) R factor by the fi(-) R factors in the recipients, since transduction of an fi(+) R factor by the transducing phage propagated on the strain carrying both fi(+) and fi(-) R factors was not reduced by the presence of homologous fi(-) R factors in the recipients. The fi(+) R factor 222, when transduced to the recipient strains carrying other R factors, recombined genetically at high frequencies with these resident R factors, regardless of their fi type.  相似文献   

4.
Thermosensitive Replication of a Kanamycin Resistance Factor   总被引:41,自引:26,他引:15       下载免费PDF全文
A strain of Proteus vulgaris isolated from the urinary tract of a patient with postoperative pyelonephritis and resistant to sulfonamide, streptomycin, tetracycline, and kanamycin (KM) was found to transfer only KM resistance by cell-to-cell conjugation. The genetic determinant controlling the transferable KM resistance was considered to be an R factor and was designated R (KM). Successive transfer of KM resistance was demonstrated also from Escherichia coli 20S0, which received the R (KM) factor, to other substrains of E. coli K-12 or Salmonella typhimurium LT-2. The transfer of the R (KM) factor was strongly affected by the temperature at which the mating culture was kept. The transfer frequency of R (KM) at 25 C was about 10(5) times higher than at 37 C. The R (KM) factor was spontaneously eliminated from the host bacterial cells when P. vulgaris was cultured at 42 C, but no elimination occurred at 25 C. This elimination of the R (KM) factor at elevated temperature was also observed when the R (KM) factor infected E. coli and S. typhimurium. On the other hand, a normal R factor could not be eliminated from the same E. coli host strain by cultivation at the higher temperature. We consider the thermosensitive transfer and the spontaneous elimination of the R (KM) factor at higher temperature to depend upon thermosensitive replication of the R (KM) factor.  相似文献   

5.
A mutant of the repressed R factor R1a and two mutants of the derepressed R factor R1drd-19 showing a two- to fourfold increase in resistance to all of the antibiotics to which the wild-type R factors mediate resistance were studied. The increased resistance was due to a two- to fourfold increase in the number of R-factor copies per chromosome. The production of drug-metabolizing enzymes was linearly correlated to the gene dosage. There was also a linear correlation between resistance to the drugs and the production of the corresponding enzymes. The mutations were also expressed in Proteus mirabilis PM1. In Proteus, R factors are split into two plasmids, resistance transfer factor and the resistance part. The mutation in one of the mutant R factors seems to be located in the resistance part. A second fi(+) R factor (R100) was introduced into strains already carrying R1drd-19 or the mutant R factor R1drd-19B2. In the first case, R100 and R1drd-19 segregated with equal probability when the bacteria were grown on antibiotic-free medium, whereas, in the second case, R100 was rapidly and preferentially excluded.  相似文献   

6.
Hirota, Yukinori (University of Osaka, Osaka, Japan), Toshio Fujii, and Yukinobu Nishimura. Loss and repair of conjugal fertility and infectivity of the resistance factor and sex factor in Escherichia coli. J. Bacteriol. 91:1298-1304. 1966.-The drug-resistance factor, R, and the sex factor, F, have homologous traits, including contagious transmission, mediation of sexuality of the host cell, and autonomous replication in their host bacteria. Cooperation between F and R factors was found with a mutant R factor, which is nontransmissible in F(-) bacteria, becoming transmissible when introduced into bacteria carrying F. Conversely, the chromosome of a sterile male strain carrying the mutant sex factor, F(r), becomes transmissible when an R factor is introduced into the cell. The genetic determinants of R factors have been analyzed by isolation of mutant R factors, by sexual conjugation of the host bacteria, and by transduction of R factors with phage P1kc. The fertility determinant of the R factor, m, is inseparable from the determinant for its infectivity, but can be separated from the loci for autonomous replication of the R factor. R and F thus carry genetic determinants governing the same functions.  相似文献   

7.
Hashimoto, Hajime (Osaka University, Osaka, Japan), and Yukinori Hirota. Gene recombination and segregation of resistance factor R in Escherichia coli. J. Bacteriol. 91:51-62. 1966.-Independent chloramphenicol-sensitive (CM(s)) mutants of the drug-resistance factor R were isolated. Introduction of two different R factor CM(s) mutants into a single bacterium, by conjugation or transduction, gave chloramphenicol-resistant (CM(r)) colonies when such strains were plated on a medium containing chloramphenicol (Cm). These CM(r) colonies resulted from recombination between two R factors contained within the same cell. Most of the CM(r) colonies were heterogeneous, and segregation of drug-resistance markers was observed among the progeny. Segregated bacteria which still carried the recombinant R factor were stable for resistance to Cm as well as for other markers of R. All the markers of recombinant R factors were cotransducible with high coincidence and at the same frequency as wild-type R. Sensitive mutants of R which had lost all the resistance markers of the R factor were found also. A mutation of R, referred to as SMA, which was sensitive to streptomycin and sulfanilamide, was capable of reverting to resistance to both of these drugs simultaneously. The sensitive alleles for SMA, CM, and TC were shown to be recessive to the resistance alleles. Mutants of R having multisite mutations or deletions in the CM gene were isolated and used to analyze the pattern of linked segregation of unselected markers of the recombinant R factor. The drug resistance factor R was shown to have two linkage groups, CM-SMA and TC-m.  相似文献   

8.
The mechanism of interference with R17 viral RNA expression by a host protein, factor i, was studied. Formation of initiation complexes on native bacteriophage R17 RNA molecules, as well as translation of R17 RNA in vitro, is blocked almost quantitatively by factor i. This inhibition is readily overcome by the addition of excess R17 RNA. Extensive complex formation between factor i and R17 RNA occurs during inhibition of initiation complex formation. Moreover, the extent of inhibition of R17 RNA translation correlates closely with the extent of complex formation between factor i and R17 RNA, and exhibits the same sigmoid concentration dependence on factor i.Although initiation complex formation is totally dependent upon initiation factor IF-3, neither this function of IF-3, nor its ability to prevent the association of 30 S and 50 S ribosomal subunits into single ribosomes, is affected by factor i. IF-3, even when present in tenfold molar excess over factor i, fails to relieve the inhibition of initiation on R17 RNA.It is concluded that factor i is a translational represser acting directly on messenger RNA. It is suggested that this repression is cistron-specific, affecting only viral coat protein synthesis. Messenger RNA discrimination by factor i does not involve initiation factor IF-3.  相似文献   

9.
Yuan QP  Walke EN  Sheehan JP 《Biochemistry》2005,44(9):3615-3625
Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A > R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A > R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.  相似文献   

10.
Transition of the R Factor R12 in Proteus mirabilis   总被引:3,自引:2,他引:1       下载免费PDF全文
When Proteus mirabilis harboring the R factor R12 (a round of replication mutant of the R factor NR1) is cultured in medium containing streptomycin there can be an amplification in the number of copies of r-determinants per cell and the formation of enlarged polygenic R factors containing repeated sequences of r-determinants as well as polygenic molecules consisting of repeated sequences of r-determinants. This phenomenon has been referred to as the "transition." When transitioned cells are then cultured in drug-free medium, within a few generations two distinct density species of R factor deoxyribonucleic acid (DNA) are observed in a CsCl density gradient: a 1.712 g/ml band of covalently closed circular R factor DNA consisting of one transfer factor (RTF-TC) plus one r-determinant and a 1.718 g/ml band consisting of repeated sequences of r-determinants. The RTF-TC component of the R factor appears to control the replication of all the R factor DNA which is attached to it. In the autonomous state, however, polygenic sequences of r-determinants do not appear to replicate under the same control mechanism as when they are attached to an RTF-TC.  相似文献   

11.
The thermosensitive kanamycin (KM) resistance factor, R(KM)(t), and a nonthermosensitive multiple-drug resistance factor, R(100), were simultaneously introduced into Escherichia coli and Salmonella typhimurium. The temperature sensitivity of both R factors remained unchanged as long as they replicated independently. Under certain conditions, however, a new thermosensitive R factor harboring resistance markers for kanamycin, streptomycin (SM), and sulfanilamide (SA) was obtained by recombination between the R(KM)(t) and R(100) factors. R factors carrying resistance markers for KM and SA, or for SM and SA, were obtained from the recombinant R(KM SA SM)(t) by spontaneous segregation. Though the R(100) factor has been known as an fi(+) (positive for F-mediated fertility inhibition of its host) type and it does not restrict any coexisting phages, the thermosensitive recombinants of R(100) with R(KM)(t) and their segregants were found to be fi(-) and to restrict the replication of all T-even phages, as does the R(KM)(t) factor. Double infection immunity was not observed between the R(KM)(t) and R(100) factors.  相似文献   

12.
Activation of factor VIII by thrombin occurs via limited proteolysis at R372, R740, and R1689. The resultant active factor VIIIa molecule consists of three noncovalently associated subunits: A1-a1, A2-a2, and A3-C1-C2 (50, 45, and 73 kDa respectively). Further proteolysis of factor VIIIa at R336 and R562 by activated protein C subsequently inactivates this cofactor. We now find that the factor VIIa-tissue factor complex (VIIa-TF/PL), the trigger of blood coagulation with restricted substrate specificity, can also catalyze limited proteolysis of factor VIII. Proteolysis of factor VIII was observed at 10 sites, producing 2 major fragments (47 and 45 kDa) recognized by an anti-factor VIII A2 domain antibody. Time courses indicated the slow conversion of the large fragment to 45 kDa, followed by further degradation into at least two smaller fragments. N-Terminal sequencing along with time courses of proteolysis indicated that VIIa-TF/PL cleaved factor VIII first at R740, followed by concomitant cleavage at R336 and R372. Although cleavage of the light chain at R1689 was observed, the majority remained uncleaved after 17 h. Consistent with this, only a transient 2-fold increase in factor VIII clotting activity was observed. Thus, heavy chain cleavage of factor VIII by VIIa-TF/PL produces an inactive factor VIII cofactor no longer capable of activation by thrombin. In addition, VIIa-TF/PL was found to inactivate thrombin-activated factor VIII. We hypothesize that these proteolyses may constitute an alternative pathway to regulate coagulation under certain conditions. In addition, the ability of VIIa-TF/PL to cleave factor VIII at 10 sites greatly expands the known protein substrate sequences recognized by this enzyme-cofactor complex.  相似文献   

13.
Misenheimer TM  Sheehan JP 《Biochemistry》2010,49(46):9997-10005
Supersulfated low molecular weight heparin (ssLMWH) inhibits the intrinsic tenase (factor IXa-factor VIIIa) complex in an antithrombin-independent manner. Recombinant factor IXa with alanine substitutions in the protease domain (K126A, N129A, K132A, R165A, R170A, N178A, R233A) was assessed with regard to heparin affinity in solution and ability to regulate protease activity within the factor IXa-phospholipid (PL) and intrinsic tenase complexes. In a soluble binding assay, factor IXa K126A, K132A, and R233A dramatically (10-20-fold) reduced ssLMWH affinity, while factor IXa N129A and R165A moderately (5-fold) reduced affinity relative to wild type. In the factor IXa-PL complex, binding affinity for ssLMWH was increased 4-fold, and factor X activation was inhibited with a potency 7-fold higher than predicted for wild-type protease-ssLMWH affinity in solution. In the intrinsic tenase complex, ssLMWH inhibited factor X activation with a 4-fold decrease in potency relative to wild-type factor IXa-PL. The mutations increased resistance to inhibition by ssLMWH in a similar fashion for both enzyme complexes (R233A > K126A > K132A/R165A > N129A/N178A/wild type) except for factor IXa R170A. This protease had ssLMWH affinity and potency for the factor IXa-PL complex similar to wild-type protease but was moderately resistant (6-fold) to inhibition in the intrinsic tenase complex based on increased cofactor affinity. These results are consistent with conformational regulation of the heparin-binding exosite and macromolecular substrate catalysis by factor IXa. An extensive overlap exists between the heparin and factor VIIIa binding sites on the protease domain, with residues K126 and R233 dominating the heparin interaction and R165 dominating the cofactor interaction.  相似文献   

14.
The ability of the R46 R factor and its derivative pKM101 to modify sensitivity to 60Co gamma radiation was studied. In Escherichia coli K12 both plasmids enhanced bacterial survival after 60Co gamma irradiation. This effect was dependent on recA+ genotype but not on recB+, recB+ recC+, and recF+ genotypes. 5-Fluorouracil eliminated the R46 R factor from the parent and its rec- mutant strains. These strains lost not only the antibiotic resistance coded for R46 R factor but their radioresistance as well.  相似文献   

15.
Heparin inhibits the intrinsic tenase complex (factor IXa-factor VIIIa) via interaction with a factor IXa exosite. To define the role of this exosite, human factor IXa with alanine substituted for conserved surface residues (R126, N129, K132, R165, N178) was characterized. Chromogenic substrate hydrolysis by the mutant proteases was reduced 20-30% relative to factor IXa wild type. Coagulant activity was moderately (N129A, K132A, K126A) or dramatically (R165A) reduced relative to factor IXa wild type. Kinetic analysis demonstrated a marked reduction in apparent cofactor affinity (23-fold) for factor IXa R165, and an inability to stabilize cofactor activity. Factor IXa K126A, N129A, and K132A demonstrated modest reductions ( approximately 2-fold) in apparent cofactor affinity, and accelerated decay of intrinsic tenase activity. In the absence of factor VIIIa, factor IXa N178A and R165A demonstrated a defective Vmax(app) for factor X activation. In the presence of factor VIIIa, Vmax(app) varied in proportion to the predicted factor IXa-factor VIIIa concentration. However, factor IXa R165A had a 65% reduction in the kcat for factor X, suggesting an additional effect on catalysis. The ability of factor IXa to compete for physical assembly into the intrinsic tenase complex was enhanced by EGR-chloromethylketone bound to the factor IXa active site or addition of factor X, and reduced by selected mutations in the heparin-binding exosite (N178A, K126A, R165A). These results suggest that the factor IXa heparin-binding exosite participates in both cofactor binding and protease activation, and cofactor affinity is linked to active site conformation and factor X interaction during enzyme assembly.  相似文献   

16.
Bacteriophages P1vir and Mu-1 have been used for transductional shortening of recombinant R factor coding for R.M.EcoR1 isolated by Yoshimori et al. P1 shortening made possible the isolation of transmissive isogenic plasmids coding R.M.EcoR1 and differing in antibiotic resistances, as well as isolation of plasmids differing only in R.M.EcoR1 genes. Mu-1 mediated shortening favoured the isolation of transmissive R plasmids having lost the resistance to chloramphenicol but having all other markers of recombinant R factor intact. The data are interpreted in support of Yoshimori et al. supposition concerning the existence of R.M.EcoR1 coding recombinant R factor of Escherichia coli.  相似文献   

17.
R factor proteins are synthesized in R factor-containing Escherichia coli minicells. Half of this protein remained associated with the minicell membrane upon lysis of the minicells. Over 90% of the membrane-associated protein was extracted by sodium lauryl sarcosinate, suggesting a location of these proteins in the inner membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these membrane preparations demonstrated the presence of multiple peptides, including a prominent band with a molecular weight of 28,000 to 30,000. A polypeptide of similar size was seen in membrane preparations from minicells harboring R factors from five different compatibility types. This major R factor membrane peptide was seen with R factors repressed or derepressed for pilus synthesis, with and without antibiotic resistances. It was associated with R factor deoxyribonucleic acid in membrane-deoxyribonucleic acid complexes. Its possible role in R factor replication and/or transfer is being investigated.  相似文献   

18.
Thein-vitro and thein-vivo transfer frequencies ofE.coli 50 (R1) carrying a phage-restricting R factor, and ofE.coli 71 (R2) carrying a non-restricting R factor, were measured. Thein-vitro transfer frequencies were found to be greatly dependent on the method of conjugation employed. The transfer,in vivo, of R factor R2 toS.panama was slightly more efficient than was the transfer of R1.  相似文献   

19.
Hashimoto, Hajime (Gunma University, Maebashi, Japan), and Susumu Mitsuhashi. Drug resistance of enteric bacteria. VII. Recombination of R factors with tetracycline-sensitive mutants. J. Bacteriol. 92:1351-1356. 1966.-The transmissible drug-resistance factor R is able to confer resistance to tetracycline (TC), chloramphenicol (CM), streptomycin (SM), and sulfonamide (SA) on a host bacterium when infected by cell-to-cell contact. Tetracycline-sensitive mutants were isolated from either CM- or SM-sensitive mutants of an R factor. Among 30 mutants isolated, 10 were point mutants which could recombine with each other, forming recombinant R factors able to grow on plates containing 50 mug/ml of TC. The recombination frequency of TC-resistant recombinants was 10(-2) to 10(-3) in bacterial cells carrying two types of TC-sensitive R factors by superinfection with both factors. Segregational patterns of the various markers on the R factor, i.e., chl, str, sul, and m, the locus determining R mating, and their linkage order, were investigated among TC-resistant recombinants of the R factor. When TC was used as the selective drug, the tet locus mapped on the R factor as an end marker. In view of the fact that these results are inconsistent with the linkage order of various markers reported previously, a circular genetic structure for the R factor which includes five tet-s and three chl-s loci is presented.  相似文献   

20.
Physical Properties and Mechanism of Transfer of R Factors in Escherichia coli   总被引:26,自引:20,他引:6  
The physical properties of F-like and I-like R factors have been compared with those of the wild-type F factor in Escherichia coli K-12 unmated cells and after transfer to recipient cells by conjugation. The F-like R factor R538-1drd was found to have a molecular weight of 49 x 10(6), whereas the molecular weight of the I-like R factor R64drd11 was 76 x 10(6). The wild-type F factor, F1, had a molecular weight of 62 x 10(6). When conjugation experiments are performed by using donor strains carrying these derepressed F-like or I-like R factors, the transferred deoxyribonucleic acid can be isolated as a covalently closed circle from the recipient cells. This circular deoxyribonucleic acid was characterized by making use of the observation that the complementary strands of these R factors can be separated in a CsCl-poly (U, G) equilibrium gradient. The results of the strand-separation experiments show that only one of the complementary strands of the R factor is transferred from the donor to the recipient. With both the F-like and I-like R factors, this strand is the heavier strand in CsCl-poly (U, G). These results indicate that even though F-like and I-like R factors differ greatly in many properties (phage specificity, size, compatability, etc.), they are transferred by a similar mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号