首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosomal protein synthesis by a mutant of Escherichia coli   总被引:1,自引:0,他引:1  
The mutant strain of Escherichia coli, TP28, synthesises ribosomes by an abnormal pathway and accumulates large quantities of 47S ribonucleoprotein particles. The protein complement of mutant 70S ribosomes is normal but 47S particles contain only traces of proteins L28 and L33 and have a significantly reduced content of four other proteins. The mutation reduces the rates of synthesis of L28 and L33 by about half but other widespread alterations ensue. In particular, ribosomal protein synthesis in the mutant strain becomes less well balanced than in its parent: some proteins, particularly those from promoter-proximal genes, are oversynthesized and their excess then degraded.  相似文献   

2.
30 S subunits of Escherichia coli ribosomes washed with 3 m-NH4C1 lose proteins S2, S3, S9, S10, S14, S20 and S21, as well as their ability to bind S1 with high affinity (Laughrea and Moore, 1978). Binding activity is restored when the split proteins are added back to the protein-deficient cores. Here we show that, among the split proteins, S9 is by far the most effective in restoring S1 binding capability to 3 m-NH4Cl cores.  相似文献   

3.
4.
Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. While the biological roles of the Ada, AlkA, and AlkB proteins have been defined, despite many efforts, the molecular functions of AidB remain largely unknown. In this study, we focused on the biological role of the AidB protein, and we demonstrated that AidB shows preferential binding to a DNA region that includes the upstream element of its own promoter, PaidB. The physiological significance of this specific interaction was investigated by in vivo gene expression assays, demonstrating that AidB can repress its own synthesis during normal cell growth. We also showed that the domain architecture of AidB is related to the different functions of the protein: the N-terminal region, comprising the first 439 amino acids (AidB "I-III"), possesses FAD-dependent dehydrogenase activity, while its C-terminal domain, corresponding to residues 440 to 541 (AidB "IV"), displays DNA binding activity and can negatively regulate the expression of its own gene in vivo. Our results define a novel role in gene regulation for the AidB protein and underline its multifunctional nature.  相似文献   

5.
6.
7.
In eubacteria, ribosome stalling during protein synthesis is rescued by a tmRNA-derived trans-translation system. Because ribosomal protein S1 specifically binds to tmRNA with high affinity, it is considered to be involved in the trans-translation system. However, the role of S1 in trans-translation is still unclear. To study the function of S1 in the trans-translation system, we constructed an S1-free cell-free translation system. We found that trans-translation proceeded even in the absence of S1. Addition of S1 into the S1-free system did not affect trans-translation efficiency. These results suggest that S1 does not play a role in the trans-translation machinery.  相似文献   

8.
9.
Summary The efficiency of ribosomal protein S20 to act as repressor of its own synthesis in an in vitro system was found to depend greatly on the procedures employed to purify this protein. Whilst conventionally purified r-protein S20 inhibited its own synthesis by some 30%, up to 90% inhibition was observed if milder purification conditions were used. Evidence is presented that the latter preparation shows also a higher binding affinity to 16S rRNA.  相似文献   

10.
Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.  相似文献   

11.
The 16S rRNA-binding ribosomal protein S15 is a key component in the assembly of the small ribosomal subunit in bacteria. We have shown that S15 from the extreme thermophile Thermus thermophilus represses the translation of its own mRNA in vitro, by interacting with the leader segment of its mRNA. The S15 mRNA-binding site was characterized by footprinting experiments, deletion analysis and site-directed mutagenesis. S15 binding triggers a conformational rearrangement of its mRNA into a fold that mimics the conserved three-way junction of the S15 rRNA-binding site. This conformational change masks the ribosome entry site, as demonstrated by direct competition between the ribosomal subunit and S15 for mRNA binding. A comparison of the T.thermophilus and Escherichia coli regulation systems reveals that the two regulatory mRNA targets do not share any similarity and that the mechanisms of translational inhibition are different. Our results highlight an astonishing plasticity of mRNA in its ability to adapt to evolutionary constraints, that contrasts with the extreme conservation of the rRNA-binding site.  相似文献   

12.
肠出血性大肠杆菌(enterohemorrhagic Escherichia coli,EHEC)0157:H7是一种重要的肠道病原微生物,感染后可引发多种疾病,严重者可导致死亡.EHEC O157:H7通过Ⅲ型分泌系统(TTSS)将其转位效应器蛋白质转位至宿主细胞,经一系列的信号传导过程介导与宿主细胞的"黏附与擦拭"(attaching and effacing,A/E)损伤.对EHEC0157:H7 Ⅲ型分泌系统及其转位效应器蛋白质进行研究,可使我们进一步认识EHEC以及引起A/E损伤的病原菌的致病机理,丰富有关Ⅲ型分泌系统和致病岛的知识.  相似文献   

13.
14.
Antiserum was made against a single 30S protein, 30S-7. The amount of complement fixed by total 30S protein in the presence of this antiserum indicated that protein 30S-7 was the major antigen in the mixture of proteins. Each of the 30S ribosomal proteins was tested for cross-reactivity with anti-30S-7. This was done by determining if any of the other 30S proteins inhibited complement fixation by 30S-7. None of the other 30S proteins was found to inhibit complement fixation by 30S-7, indicating that 30S-7 is antigenically distinct from the other proteins.  相似文献   

15.
Escherichia coli extracts activate cell-free protein synthesis systems by providing the catalysts for translation and other supporting reactions. Recent results suggest that high-density fermentations can be used to provide the source cells, but the subsequent cell extract preparation procedure requires multiple centrifugation and dialysis steps as well as an expensive runoff reaction. In the work reported here, the extract preparation protocol duration was reduced by nearly 50% by significantly shortening several steps. In addition, by optimizing the runoff incubation, overall reagent costs were reduced by 70%. Nonetheless, extracts produced from the shorter, less expensive procedure were equally active. Crucial steps were further examined to indicate minimal ribosome loss during the standard 30,000g centrifugations. Furthermore, sucrose density centrifugation analysis indicated that although an incubation step significantly activates the extract, ribosome/polysome dissociation is not required. These insights suggest that consistent cell extract can be produced more quickly and with considerably less expense for large-scale cell-free protein production, especially when combined with high-density fermentation protocols.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号