首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A replication fork barrier at the 3' end of yeast ribosomal RNA genes   总被引:51,自引:0,他引:51  
B J Brewer  W L Fangman 《Cell》1988,55(4):637-643
  相似文献   

2.
3.
4.
5.
6.
7.
8.
Tsang E  Carr AM 《DNA Repair》2008,7(10):1613-1623
There is increasing interest in the role of replication fork arrest and collapse in stimulating genomic instability. Changes in the copy number of the rDNA repeats mediated by homologous recombination has been linked to programmed replication fork barriers (RFBs) and this has been proposed to serve as a paradigm to help understand the links between replication and recombination. Here we review recent advances in our understanding of the initiation and regulation rDNA recombination and discuss historical observations in the context of recently developed models. We contrast the outcome of replication fork arrest at the rDNA RFB with those at an alternative RFB and suggest that, while there are potential similarities in response, there are also important differences which reflect the highly specialised nature of rDNA metabolism.  相似文献   

9.
10.
11.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   

12.
In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).  相似文献   

13.
Ivessa AS  Zhou JQ  Zakian VA 《Cell》2000,100(4):479-489
Replication of Saccharomyces ribosomal DNA (rDNA) proceeds bidirectionally from origins in a subset of the approximately 150 tandem repeats, but the leftward-moving fork stops when it encounters the replication fork barrier (RFB). The Pif1p helicase and the highly related Rrm3p were rDNA associated in vivo. Both proteins affected rDNA replication but had opposing effects on fork progression. Pif1p helped maintain the RFB. Rrm3p appears to be the replicative helicase for rDNA as it acted catalytically to promote fork progression throughout the rDNA. Loss of Rrm3p increased rDNA breakage and accumulation of rDNA circles, whereas breakage and circles were less common in pif1 cells. These data support a model in which replication fork pausing causes breakage and recombination in the rDNA.  相似文献   

14.
The yeast checkpoint factors Mrc1p and Tof1p travel with the replication fork and mediate the activation of the Rad53p kinase in response to a replication stress. We show here that both proteins are required for normal fork progression but play different roles at stalled forks. Tof1p is critical for the activity of the rDNA replication fork barrier (RFB) but plays a minor role in the replication checkpoint. In contrast, Mrc1p is not necessary for RFB activity but is essential to mediate the replication stress response. Interestingly, stalled forks did not collapse in mrc1Delta cells exposed to hydroxyurea (HU) as they do in rad53 mutants. However, forks failed to restart when mrc1Delta cells were released from the block. The critical role of Mrc1p in HU is therefore to promote fork recovery in a Rad53p-independent manner, presumably through the formation of a stable fork-pausing complex.  相似文献   

15.
Ahn JS  Osman F  Whitby MC 《The EMBO journal》2005,24(11):2011-2023
Homologous recombination is believed to play important roles in processing stalled/blocked replication forks in eukaryotes. In accordance with this, recombination is induced by replication fork barriers (RFBs) within the rDNA locus. However, the rDNA locus is a specialised region of the genome, and therefore the action of recombinases at its RFBs may be atypical. We show here for the first time that direct repeat recombination, dependent on Rad22 and Rhp51, is induced by replication fork blockage at a site-specific RFB (RTS1) within a 'typical' genomic locus in fission yeast. Importantly, when the RFB is positioned between the direct repeat, conservative gene conversion events predominate over deletion events. This is consistent with recombination occurring without breakage of the blocked fork. In the absence of the RecQ family DNA helicase Rqh1, deletion events increase dramatically, which correlates with the detection of one-sided DNA double-strand breaks at or near RTS1. These data indicate that Rqh1 acts to prevent blocked replication forks from collapsing and thereby inducing deletion events.  相似文献   

16.
The accessibility of DNA in chromatin to psoralen was assayed to compare the chromatin structure of the rRNA coding and spacer regions of the two related frog species Xenopus laevis and Xenopus borealis. Isolated nuclei from tissue culture cells were photoreacted with psoralen, and the extent of cross-linking in the different rDNA regions was analyzed by using a gel retardation assay. In both species, restriction fragments from the coding regions showed two distinct extents of cross-linking, indicating the presence of two types of chromatin, one that contains nucleosomes and represents the inactive gene copies, and the other one which is more cross-linked and corresponds to the transcribed genes. A similar cross-linking pattern was obtained with restriction fragments from the enhancer region. Analysis of fragments including these sequences and the upstream portions of the genes suggests that active genes are preceded by nonnucleosomal enhancer regions. The spacer regions flanking the 3' end of the genes gave different results in the two frog species. In X. borealis, all these sequences are packaged in nucleosomes, whereas in X. laevis a distinct fraction, presumably those flanking the active genes, show a heterogeneous chromatin structure. This disturbed nucleosomal organization correlates with the presence of a weaker terminator at the 3' end of the X. laevis genes compared with those of X. borealis, which allows polymerases to transcribe into the downstream spacer.  相似文献   

17.
18.
19.
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号