首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

2.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.  相似文献   

4.
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.  相似文献   

5.
We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (n(i) = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (lambda(p) = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (|d(eff)| approximately 0.085(+/-0.025)x10(-12)mV(-1)) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal.  相似文献   

6.
Water-soluble heteroglycans (SHG) were isolated from leaves of wild-type Arabidopsis thaliana L. and from two starch-deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHG(S)) and high (>10 kDa; SHG(L)) molecular weight compounds. SHG(S) was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHG(L) was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non-aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHG(S) exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1-phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHG(S) and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2-glycan interaction. As revealed by in vivo labeling experiments using 14CO2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light-dark regime.  相似文献   

7.
Fu Y  Wang H  Shi R  Cheng JX 《Biophysical journal》2007,92(9):3251-3259
Sum frequency generation (SFG) and second harmonic generation (SHG) were observed from helical fibrils in spinal cord white matter isolated from guinea pigs. By combining SFG with coherent anti-Stokes Raman scattering microscopy, which allows visualization of myelinated axons, these fibers were found to be distributed near the surface of the spinal cord, between adjacent axons, and along the blood vessels. Using 20-microm-thick tissue slices, the ratio of forward to backward SHG signal from large bundles was found to be much larger than that from small single fibrils, indicating a phase-matching effect in coherent microscopy. Based on the intensity profiles across fibrils and the size dependence of forward and backward signal from the same fibril, we concluded that the main SHG signal directly originates from the fibrils, but not from surface SHG effects. Further polarization analysis of the SHG signal showed that the symmetry property of the fibril could be well described with a cylindrical model. Colocalization of the SHG signal with two-photon excitation fluorescence (TPEF) from the immunostaining of glial fibrillary acidic protein demonstrated that SHG arises from astroglial filaments. This assignment was further supported by colocalization of the SHG contrast with TPEF signals from astrocyte processes labeled by a Ca(2+) indicator and sulforhodamine 101. This work shows that a combination of three nonlinear optical imaging techniques--coherent anti-Stokes Raman scattering, TPEF, and SHG (SFG) microscopy--allows simultaneous visualization of different structures in a complex biological system.  相似文献   

8.
Interpreting second-harmonic generation images of collagen I fibrils   总被引:12,自引:0,他引:12       下载免费PDF全文
Fibrillar collagen, being highly noncentrosymmetric, possesses a tremendous nonlinear susceptibility. As a result, second-harmonic generation (SHG) microscopy of collagen produces extremely bright and robust signals, providing an invaluable tool for imaging tissue structure with submicron resolution. Here we discuss fundamental principles governing SHG phase matching with the tightly focusing optics used in microscopy. Their application to collagen imaging yields several biophysical features characteristic of native collagen structure: SHG radiates from the shell of a collagen fibril, rather than from its bulk. This SHG shell may correspond to the supporting element of the fibril. Physiologically relevant changes in solution ionic strength alter the ratio of forward-to-backward propagating SHG, implying a resulting change in the SHG shell thickness. Fibrillogenesis can be resolved in immature tissue by directly imaging backward-propagating SHG. Such findings are crucial to the design and development of forthcoming diagnostic and research tools.  相似文献   

9.
Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, complementing existing one- and two-photon fluorescence (2PF) methods. A non-linear phenomenon employing light from mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry, a constraint that is readily satisfied by lipid membranes with only one leaflet stained by a dye. Of particular interest is “resonance-enhanced” SHG from styryl dyes in cellular membranes and the possibility that SHG is sensitive to transmembrane potential. We have previously confirmed this, using simultaneous voltage-clamping and non-linear imaging of cells to find that SHG is up to four times more sensitive to potential than fluorescence. In this work, we have extended these results in two directions. First, with a range of wavelengths available from a mode-locked Ti:sapphire laser and a fiber-based laser, we have more fully investigated SHG and 2PF voltage-sensitivity from ANEP and ASTAP chromophores, obtaining SHG sensitivity spectra that are consistent with resonance enhancements. Second, we have modified our system to coordinate the application of voltage-clamp steps with non-linear image acquisition to more precisely characterize the time dependence of SHG and 2PF voltage sensitivity, finding that, at least for some dyes, SHG responds more slowly than fluorescence to changes in transmembrane potential.  相似文献   

10.
In this work, we report the implementation of interferometric second harmonic generation (SHG) microscopy with femtosecond pulses. As a proof of concept, we imaged the phase distribution of SHG signal from the complex collagen architecture of juvenile equine growth cartilage. The results are analyzed in respect to numerical simulations to extract the relative orientation of collagen fibrils within the tissue. Our results reveal large domains of constant phase together with regions of quasi-random phase, which are correlated to respectively high- and low-intensity regions in the standard SHG images. A comparison with polarization-resolved SHG highlights the crucial role of relative fibril polarity in determining the SHG signal intensity. Indeed, it appears that even a well-organized noncentrosymmetric structure emits low SHG signal intensity if it has no predominant local polarity. This work illustrates how the complex architecture of noncentrosymmetric scatterers at the nanoscale governs the coherent building of SHG signal within the focal volume and is a key advance toward a complete understanding of the structural origin of SHG signals from tissues.  相似文献   

11.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

12.
The subcellular distribution of starch-related enzymes and the phenotype of Arabidopsis mutants defective in starch degradation suggest that the plastidial starch turnover is linked to a cytosolic glycan metabolism. In this communication, a soluble heteroglycan (SHG) from leaves of Pisum sativum L. has been studied. Major constituents of the SHG are galactose, arabinose and glucose. For subcellular location, the SHG was prepared from isolated protoplasts and chloroplasts. On a chlorophyll basis, protoplasts and chloroplasts yielded approximately 70% and less than 5%, respectively, of the amount of the leaf-derived SHG preparation. Thus, most of SHG resides inside the cell but outside the chloroplast. SHG is soluble and not membrane-associated. Using membrane filtration, the SHG was separated into a <10 kDa and a >10 kDa fraction. The latter was resolved into two subfractions (I and II) by field-flow fractionation. In the protoplast-derived >10 kDa SHG preparation the subfraction I was by far the most dominant compound. beta-Glucosyl Yariv reagent was reactive with subfraction II, but not with subfraction I. In in vitro assays the latter acted as glucosyl acceptor for the cytosolic (Pho 2) phosphorylase but not for rabbit muscle phosphorylase. Glycosidic linkage analyses of subfractions I and II and of the Yariv reagent reactive glycans revealed that all three glycans contain a high percentage of arabinogalactan-like linkages. However, SHG possesses a higher content of minor compounds, namely glucosyl, mannosyl, rhamnosyl and fucosyl residues. Based on glycosyl residues and glycosidic linkages, subfraction I possesses a more complex structure than subfraction II.  相似文献   

13.
14.
二次谐波显微成像技术   总被引:1,自引:0,他引:1  
二次谐波非线性显微成像技术是近年发展起来的一种新型光学成像方法,已广泛应用于生物医学的各个领域。介绍了光学二次谐波产生的原理、成像装置及其技术发展,描述了二次谐波的成像特点和它与双光子荧光成像的异同,并对其在生物医学上的应用及发展前景做出展望。  相似文献   

15.
The activities of cytokines were determined in cerebrospinal fluid (CSF) and serum of mice persistently or intracerebrally acutely infected with lymphocytic choriomeningitis (LCM) virus (LCMV). In contrast to CBA/J (LCMV carrier) mice that responded with low levels of LCMV-specific antibody, high-responder NMRI (carrier) mice showed antibody production by B cells outside of lymphoid organs. The B cells that had infiltrated the brains of LCMV carrier mice exhibited no preferential immunoglobulin isotype or subtype virus-specific antibody production. Phenotypic analysis of the brain infiltrates in virus carrier mice revealed dominance of CD4+ T cells in contrast to virtual absence of CD4+ and dominance of CD8+ in mice with acute LCM. In NMRI but not in CBA/J carrier mice, significant concentrations of interleukin-6 (IL-6) were detected in CSF and serum; IL-2, IL-4, IL-5, granulocyte-macrophage CSF (GM-CSF), and gamma interferon (IFN-gamma) were not elevated. In contrast, during acute, lethal LCM, IL-6 and IFN-gamma were found at high concentrations, and IL-4, IL-5, and GM-CSF were detectable in CSF and serum, but virus-specific antibody-producing cells were not (yet) detectable in the brain. Thus, distinct cytokine patterns are found in acute versus chronic LCMV infection of the brain: in LCM carrier mice, local random-class immunoglobulin production correlated with the absence of IL-2, IL-4, IL-5, and IFN-gamma but active secretion of IL-6.  相似文献   

16.
To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ~3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.  相似文献   

17.
On the ultrastructure of specific heart granules in teleosts   总被引:1,自引:0,他引:1  
The ultrastructure and chemical reactivity of teleostean specific ('atrial') heart granules (SHG) are described. In atrial cells of Glyptocephalus cynoglossus and Gadus morhua , large aggregations of SHG occur in areas of the sacroplasm rich in glycogen and poor in myofibrils. The SHG often appear to be in a process of lysis. A number of heart granules were also noted in atrial cells of Cichlasoma meeki, Pistella riddlei and Sebastes viviparus . although large aggregations were not seen. The mean diameters of SHG in G. cynoglossus and S. viviparus are 110 and 210 nm, respectively. SHG are regularly found in ventricular cells, although less frequently than in the atrium. Ultrahistochemical tests suggest that the teleostean SHG mainly contain proteins.  相似文献   

18.
Using second harmonic generation (SHG) imaging microscopy, we have examined the effect of optical clearing with glycerol to achieve greater penetration into specimens of skeletal muscle tissue. We find that treatment with 50% glycerol results in a 2.5-fold increase in achievable SHG imaging depth. Signal processing analyses using fast Fourier transform and continuous wavelet transforms show quantitatively that the periodicity of the sarcomere structure is unaltered by the clearing process and that image quality deep in the tissue is improved with clearing. Comparison of the SHG angular polarization dependence also shows no change in the supramolecular organization of acto-myosin complexes. By contrast, identical treatment of mouse tendon (collagen based) resulted in a strong decrease in SHG response. We suggest that the primary mechanism of optical clearing in muscle with glycerol treatment results from the reduction of cytoplasmic protein concentration and concomitant decrease in the secondary inner filter effect on the SHG signal. The lack of glycerol concentration dependence on the imaging depth indicates that refractive index matching plays only a minor role in the optical clearing of muscle. SHG and optical clearing may provide an ideal mechanism to study physiology in highly scattering skeletal or cardiac muscle tissue with significantly improved depth of penetration and achievable imaging depth.  相似文献   

19.
We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)—nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices.  相似文献   

20.
Immunization of mice with ABA coupled to carriers to which they are nonresponders gives rise to ABA-specific proliferative responses in lymph node cells. When C3H/HeN and CBA/J nonresponder mice are immunized with ABA on (T,G)-A-L (an I-A-restricted carrier in responder mice), the responses to ABA-tyr and ABA coupled to a variety of unrelated carriers are solely I-A restricted as determined by inhibition with anti-IA and anti-I-E sera. When ABA on GLT (an I-E-restricted carrier in responder mice) is used for immunization, the responses are both I-A and I-E restricted. Thus, ABA-specific responses in nonresponder mice appear in part to be restricted by the carrier used for immunization. B10.S mice, lacking functional I-E molecules, channel their ABA-specific responses entirely through I-A when immunized with ABA-GLT. These results support the hypothesis that the failure in nonresponders lies in a functional deficit in the T cell repertoire rather than an inability of accessory cells to present antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号