首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O antigen is part of the lipopolysaccharide present in the outer membrane of gram-negative bacteria. Escherichia coli and Salmonella enterica each have many forms of O antigen, but only three are common to the two species. It has been found that, in general, O-antigen genes are of low GC content. This deviation in GC content from that of typical S. enterica or E. coli genes (51%) is thought to indicate that the O-antigen DNA originated in species other than S. enterica or E. coli and was captured by lateral transfer. The O-antigen structure of Salmonella enterica O35 is identical to that of E. coli O111, commonly found in enteropathogenic E. coli strains. This O antigen, which has been shown to be a virulence factor in E. coli, contains colitose, a 3,6-dideoxyhexose found only rarely in the Enterobacteriaceae. Sequencing of the O35-antigen gene cluster of S. enterica serovar Adelaide revealed the same gene order and flanking genes as in E. coli O111. The divergence between corresponding genes of these two gene clusters at the nucleotide level ranges from 21.8 to 11.7%, within the normal range of divergence between S. enterica and E. coli. We conclude that the ancestor of E. coli and S. enterica had an O antigen identical to the O111 and O35 antigens, respectively, of these species and that the gene cluster encoding it has survived in both species.  相似文献   

2.
3.
A strain of Citrobacter sedlakii showing serological cross-reaction with Escherichia coli O157 antisera was demonstrated to produce a lipopolysaccharide O-antigen having an identical structure with that of the E. coli O157 O-antigen. A strain of Citrobacter freunndii showing similar cross-reaction with E. coli O157 specific monoclonal antibody was shown to produce a lipopolysaccharide O-antigen composed of a trisaccharide repeating unit having the structure [ 2)-alpha-D Rhap-(1-3)-beta-D-Rhap-(1-4)-beta-D-Glcp-(1-]. This O-antigen differs from that of the E. coli O157 O-antigen and also lacks a component 2-substituted 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residue implicated as the common epitope in the lipopolysaccharide O-antigens of previously investigated bacterial species showing serological cross-reactivity with E. coli O157 antisera. The C freundii O-antigen presents an interesting example of structural mimicry within a bacterial polysaccharide antigen.  相似文献   

4.
Citrobacter freundii OCU158 is a serologically cross-reactive strain with Escherichia coli O157:H7. To explore the close relationship between two strains, we have analyzed the chemical structures of O-specific polysaccharides and antigenic properties of lipopolysaccharides (LPSs) of both strains. The structure of O-specific polysaccharides from both strains was found to be identical by chemical and nuclear magnetic resonance analyses, in which D-PerNAc was 4-acetamido-4,6-dideoxy-D-mannose: [-->4)-beta-D-Glc-(1-->3)-alpha-D-PerNAc-(1-->4)-alpha-D-GalNAc-(1 --> 3)-alpha-L-Fuc-(1-->](n). The enzyme immunoassay using LPS derived either from E. coli O157 or from C. freundii could equally detect high levels of serum antibodies against LPS in patients with enterohemorrhagic E. coli (EHEC) O157 infection. Absorption of antibodies in EHEC patient serum by LPS from E. coli O157 or C. freundii, however, showed a difference in the epitopes. This difference was attributable to the epitope specificity of the core region and/or lipid A structure in LPS.  相似文献   

5.
The O-polysaccharides were released by mild acid hydrolysis from the lipopolysaccharides of Escherichia coli O51 and Salmonella enterica O57 and found to possess the same structure, which was established by sugar analysis and 1D and 2D NMR spectroscopy: The O-antigen gene clusters of E. coli O51 and S. enterica O57 were sequenced and found to contain the same genes with a high-level similarity. All genes expected for the synthesis of the O-antigen were identified based on their similarity to genes from available databases.  相似文献   

6.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 10(6) and 10(8) CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

7.
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.  相似文献   

8.
The present study demonstrates that catecholamine responsiveness in Yersinia enterocolitica, a bacterial pathogen whose infectious spectrum is principally limited to the gut, is limited to norepinephrine and dopamine, and not epinephrine; this behavior contrasts with observations for two pathogens with a wider extra-gastrointestinal spectrum, Escherichia coli O157:H7 and Salmonella enterica, which respond to all three catecholamines. Epinephrine showed lower potency than norepinephrine and dopamine in inducing growth of E. coli and S. enterica, and was a potent antagonist of norepinephrine and dopamine growth responsiveness in Y. enterocolitica. Given that only norepinephrine and dopamine and not epinephrine-containing neurons are found with the enteric nervous system, the results suggest that certain of the more exclusive enteric pathogens may have developed response systems preferentially for those neuroendocrine hormones that are produced by the enteric nervous system as host-derived signals by which to sense the environment and initiate pathogenic processes.  相似文献   

9.
AIMS: Raw fruits and vegetables have been increasingly associated with human infections caused by Shiga toxin-producing Escherichia coli. This study evaluates the isolation and detection of E. coli O26, O111 and O157 from vegetable samples using immunomagnetic particles. METHODS AND RESULTS: Standard cultivation and immunomagnetic separation (IMS) procedures were compared. It was found that immunomagnetic particles could efficiently concentrate E. coli cells, detecting significantly more bacteria than with standard cultivation procedures. CONCLUSION: Bacteria were detected in 93-100% of the inoculated samples using the IMS procedure, but only 36-93% samples tested by standard cultivation procedures were found to be positive. SIGNIFICANCE AND IMPACT OF THE STUDY: The results indicate that E. coli O26, O111 and O157 immunomagnetic particles can be a very useful and efficient tool for the detection of E. coli strains in raw vegetables, and could probably be used with samples of animal origin.  相似文献   

10.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log(10) on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log(10). The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

11.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

12.
Significant differences (P < 0.05) were found between the survival rates of Salmonella enterica and Escherichia coli O157:H7 in peanut butter with different formulations and water activity. High carbohydrate content in peanut butter and low incubation temperature resulted in higher levels of bacterial survival during storage but lower levels of bacterial resistance to heat treatment.  相似文献   

13.
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined.  相似文献   

14.
The O-polysaccharide of Salmonella enterica O59 was studied using sugar analysis and 2D 1H and 13C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit was established:→2)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→4)-α-l-Rhap-(1→3)-β-d-GlcpNAc-(1→Accordingly, the O-antigen gene cluster of S. enterica O59 includes all genes necessary for the synthesis of this O-polysaccharide. Earlier, another structure has been reported for the O-polysaccharide of Salmonella arizonae (S. enterica IIIb) O59, which later was found to be identical to that of Citrobacter (Citrobacter braakii) O35 and, in this work, also to the O-polysaccharide of Escherichia coli O15.  相似文献   

15.
Numerous Salmonella enterica and Escherichia coli O157:H7 outbreaks have been associated with contaminated sprouts. We examined how S. enterica serovars, E. coli serotypes, and nonpathogenic bacteria isolated from alfalfa sprouts grow on and adhere to alfalfa sprouts. Growth on and adherence to sprouts were not significantly different among different serovars of S. enterica, but all S. enterica serovars grew on and adhered to alfalfa sprouts significantly better than E. coli O157:H7. E. coli O157:H7 was essentially rinsed from alfalfa sprouts with repeated washing steps, while 1 to 2 log CFU of S. enterica remained attached per sprout. S. enterica Newport adhered to 3-day-old sprouts as well as Pantoea agglomerans and 10-fold more than Pseudomonas putida and Rahnella aquatilis, whereas the growth rates of all four strains throughout seed sprouting were similar. S. enterica Newport and plant-associated bacteria adhered 10- to 1,000-fold more than E. coli O157:H7; however, three of four other E. coli serotypes, isolated from cabbage roots exposed to sewage water following a spill, adhered to sprouts better than E. coli O157:H7 and as well as the Pseudomonas and Rahnella strains. Therefore, attachment to alfalfa sprouts among E. coli serotypes is variable, and nonpathogenic strains of E. coli to be used as surrogates for the study of pathogenic E. coli may be difficult to identify and should be selected carefully, with knowledge of the biology being examined.  相似文献   

16.
17.
O-antigens are highly polymorphic. The genes specifically involved in O-antigen synthesis are generally grouped together on the chromosome as a gene cluster. In Escherichia coli, the O-antigen gene clusters are characteristically located between the housekeeping genes galF and gnd. In this study, the O-antigen gene clusters of E. coli O59 and E. coli O155 were sequenced. The former was found to contain genes for GDP-mannose synthesis, glycosyltransferase genes and the O-antigen polymerase gene (wzy), while the latter contained only glycosyltransferase genes and wzy. O unit flippase genes (wzx) were found immediately downstream of the gnd gene, in the region between the gnd and hisI genes in these two strains. This atypical location of wzx has not been reported before, and furthermore these two genes complemented in trans despite the fact that different O-antigen structures are present in E. coli O59 and O155. A putative acetyltransferase gene was found downstream of wzx in both strains. Comparison of the region between gnd and hisI revealed that the wzx and acetyltransferase genes are closely related between E. coli O59 and O155, indicating that the two gene clusters arose recently from a common ancestor. This work provides further evidence for the O-antigen gene cluster having formed gradually, and selection pressure will eventually bring O-antigen genes into a single cluster. Genes specific for E. coli O59 and O155, respectively, were also identified.  相似文献   

18.
19.
The rfb region specifies the structure of lipopolysaccharide side chains that comprise the diverse gram-negative bacterial somatic (O) antigens. The rfb locus is adjacent to gnd, which is a polymorphic gene encoding 6-phosphogluconate dehydrogenase. To determine if rfb and gnd cotransfer, we sequenced gnd in five O55 and 13 O157 strains of Escherichia coli. E. coli O157:H7 has a gnd allele (allele A) that is only 82% identical to the gnd allele (allele D) of closely related E. coli O55:H7. In contrast, gnd alleles of E. coli O55 in distant lineages are >99.9% identical to gnd allele D. Though gnd alleles B and C in E. coli O157 that are distantly related to E. coli O157:H7 are more similar to allele A than to allele D, there are nucleotide differences at 4 to 6% of their sites. Alleles B and C can be found in E. coli O157 in different lineages, but we have found allele A only in E. coli O157 belonging to the DEC5 lineage. DNA 3' to the O55 gnd allele in diverse E. coli lineages has sequences homologous to tnpA of the Salmonella enterica serovar Typhimurium IS200 element, E. coli Rhs elements (including an H-rpt gene), and portions of the O111 and O157 rfb regions. We conclude that rfb and gnd cotransferred into E. coli O55 and O157 in widely separated lineages and that recombination was responsible for recent antigenic shifts in the emergence of pathogenic E. coli O55 and O157.  相似文献   

20.
Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 109 CFU g−1 on A. thaliana roots and to 2 × 107 CFU g−1 on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号