首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The ATP.Mg-dependent type-1 protein phosphatase activating factor (factor FA) was identified as a brain protein kinase that could phosphorylate microtubule-associated protein-2 (MAP-2) and thereby inhibit cross-linking interactions of MAP-2 with actin filaments and microtubules isolated from porcine brain. The phosphorylation sites were found to be equally located on both projection and microtubule-binding domains of MAP-2. Phosphoamino acid analysis revealed that the phosphorylation sites were on both serine and threonine residues, indicating that factor FA is a serine/threonine-specific MAP-2 kinase. Conversely, factor FA was further identified as a MAP-2 phosphatase activator that could promote the dephosphorylation of32P-MAP-2 phosphorylated by factor FA itself and thereby potentiate cross-linking interactions of MAP-2 with actin and microtubules. Furthermore, the two opposing functions of factor FA can be selectively modulated in a reciprocal manner bypH change. For instance, alkalinepH could stimulate factor FA to work as a MAP-2 kinase but simultaneously block it to work as a MAP-2 phosphatase activator to potentiate the inhibition on the cross-linking interactions of MAP-2 with actin and microtubules. Taken together, the results provide initial evidence that a cyclic modulation of cross-linking interactions of MAP-2 with actin filaments and microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for rapid structural and functional regulation of neuronal cytoskeletal system.  相似文献   

2.
The ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA) was identified to exist in bovine retina. Furthermore, rhodopsin, the visual light pigment associated with rod outer segments in retina, could be well phosphorylated by kinase FA to about 0.9 mol of phosphates per mol of protein. Moreover, more than 90% of the phosphates in [32P]-rhodopsin could be completely removed by ATP.Mg-dependent protein phosphatase and the rhodopsin phosphatase activity was strictly kinase FA-dependent. Taken together, the results provide initial evidence that a cyclic phosphorylation-dephosphorylation of rhodopsin can be controlled by the retina-associated protein kinase FA, representing an efficient cyclic cascade mechanism possibly involved in the rapid regulation of rhodopsin function in retina.  相似文献   

3.
The ATP.Mg-dependent type-1 protein phosphatase and its activating factor (protein kinase FA) were identified to exist in brain synaptosome. The inactive protein phosphatase was found to exist in the synaptosomal cytosol whereas its activating factor (protein kinase FA) was present in the synaptosomal membrane, indicating that the inactive protein phosphatase and its activating factor FA are localized in two separate subcellular compartments. The membrane-bound FA was found to exist in two forms; approximately 75% of FA is inactive and trypsin-resistant, whereas 25% of FA is active and trypsin-labile. When membranes were incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be activated and sequestered to become the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, the results provide initial evidence that the activation-sequestration of membrane-bound protein kinase FA may represent one mode of control modulating the activity of protein kinase FA and thereby to activate protein phosphatase in brain synaptosome, representing an efficient regulatory mechanism for regulating neurotransmission in the central nervous system.  相似文献   

4.
The ATP·Mg-dependent protein phosphatase activating factor (Fa) has been identified and purified to near homogeneity from brain. In this report, as evidenced on SDS-polyacrylamide gel electrophoresis followed by autoradiography, factorFa has further been identified as a cAMP and Ca2+-independent brain kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton, and is believed to be involved in the modulation of neurotransmission. Kinetic study further indicated that factorFa could phosphorylate synapsin I with a lowK m value of about 2 µM and with a molar ratio of 1 mol of phosphate per mole of protein. Peptide mapping analysis revealed that factorFa specifically phosphorylated the tail region of synapsin I but on a unique site distinct from those phosphorylated by Ca2+/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase, the two well-established synapsin I kinases. Functional study further revealed that factorFa could phosphorylate this unique specific site on the tail region of synapsin I and thereby inhibit cross-linking of synapsin I with microtubules. The results further suggest the possible involvement of factorFa as a synapsin I kinase in the regulation of axonal transport process of synaptic vesicles via the promotion of vesicles motility during neurotransmission.  相似文献   

5.
The ATP·Mg-dependent protein phosphatase activating factor (Fa) has been identified and purified to near homogeneity from brain. In this report, as evidenced on SDS-polyacrylamide gel electrophoresis followed by autoradiography, factorFa has further been identified as a cAMP and Ca2+-independent brain kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton, and is believed to be involved in the modulation of neurotransmission. Kinetic study further indicated that factorFa could phosphorylate synapsin I with a lowK m value of about 2 µM and with a molar ratio of 1 mol of phosphate per mole of protein. Peptide mapping analysis revealed that factorFa specifically phosphorylated the tail region of synapsin I but on a unique site distinct from those phosphorylated by Ca2+/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase, the two well-established synapsin I kinases. Functional study further revealed that factorFa could phosphorylate this unique specific site on the tail region of synapsin I and thereby inhibit cross-linking of synapsin I with microtubules. The results further suggest the possible involvement of factorFa as a synapsin I kinase in the regulation of axonal transport process of synaptic vesicles via the promotion of vesicles motility during neurotransmission.  相似文献   

6.
The cytosolic fractions from epidermal growth factor (EGF)-treated A431 cells exhibit a marked increase in activities of ATP.Mg-dependent protein phosphatase and its activating factor (protein kinase FA) when compared to controls in the absence of EGF. By contrast, the Triton X-100-solubilized membrane fractions from the same EGF-treated cells exhibit a corresponding decrease in protein kinase FA activity. The EGF-dependent activation of protein kinase FA and ATP.Mg-dependent protein phosphatase occurred within physiological concentrations of EGF (ED50 = 5 x 10(-10) M). The changes of kinase and phosphatase activities which were measured concomitantly exhibit very similar characteristics as to EGF sensitivity and time dependence. The EGF-induced kinase and phosphatase activation occurred very rapidly, reaching the maximal activity levels within 3 min. Moreover, the EGF effect is transient; both EGF-stimulated phosphatase and kinase activities returned to control levels within 30 min. Taken together, the results suggest that EGF may induce the activation of kinase FA in the membrane and thereby promotes the activation of ATP.Mg-dependent phosphatase in the cytosol. Exposure of A431 cells to exogenous phospholipase C also resulted in the activation of endogenous kinase FA and ATP.Mg-dependent phosphatase in a similar pattern produced by EGF. This further suggests that phospholipase C can mimic EGF to mediate the activation of kinase FA and ATP.Mg-dependent phosphatase in A431 cells. By its dual role as a multisubstrate protein kinase and as an activating factor of multisubstrate protein phosphatase, protein kinase FA may represent a transmembrane signal of EGF.  相似文献   

7.
The activating factor FA of the ATP.Mg-dependent protein phosphatase FcM was purified to near homogeneity from pig brain by a procedure involving chromatography on phosphocellulose, phosvitin-Sepharose 4B, and Blue Sepharose CL-6B. A specific myelin basic protein (MBP) kinase was found to co-purify with FA in a constant ratio throughout purification. It also proved impossible to separate the two activities on nondenaturing gel electrophoresis and 5-20% sucrose density gradient ultracentrifugation. Kinetic study indicated that MBP, presumably a substrate for FA, could compete with FcM for FA and thereby prevent the FA-mediated activation of the FcM activity. All the results taken together demonstrate that MBP kinase and FA are localized on the same protein. This, together with the data that FA, by activating the ATP.Mg-dependent phosphatase, promotes the dephosphorylation of [32P]MBP, phosphorylated by FA itself, suggests the evidence for a protein bearing two opposing activities involved in the regulation of brain functions. Moreover, since FA is tightly associated with the purified brain myelin membrane, the results further support the notion that FA may well be an endogenous protein kinase responsible for the cyclic phosphorylation-dephosphorylation of the central nervous system myelin.  相似文献   

8.
Exposure of rat adipocytes to physiological concentrations of insulin resulted in a time- and concentration-dependent activation-translocation of kinase FA (an activating factor of ATP.Mg-dependent protein phosphatase) in plasma membranes and the subsequent activation of ATP.Mg-dependent protein phosphatase in the cytosol. The insulin-induced activation of membrane-associated kinase FA and cytosolic ATP.Mg-dependent protein phosphatase occurred very rapidly, reaching the maximal activity levels within 3 min. Moreover, the insulin effect is transient; the insulin-stimulated FA activity in membranes and ATP.Mg-dependent phosphatase activity in the cytosol returned to control levels within 30 min. It is concluded that insulin may induce the activation of kinase FA in membranes and thereby promotes the activation of ATP.Mg-dependent multifunctional protein phosphatase in the cytosol of rat adipocytes in order to mediate some of its intracellular effects through the dephosphorylation reactions. The release of factor FA from plasma membranes may represent one of the transmembrane signalling mechanisms for insulin actions.  相似文献   

9.
The ATP.Mg-dependent protein phosphatase activating factor (FA) has been identified as a protein kinase. The results are unexpected since factor FA possesses two activities which are antagonistic. As a kinase, factor FA catalyzes protein phosphorylation, while as a phosphatase activator, it catalyzes protein dephosphorylation. In this report, we found that the two opposing activities of factor FA could be selectively modulated. For instance, heparin at concentrations of 0.1-0.3 mg/ml could stimulate FA to work preferentially as a kinase towards phosphorylation of proteins but simultaneously inhibit it to work as a phosphatase activator towards dephosphorylation of the same proteins. In a similar manner, alkaline pH could stimulate FA to work as a kinase but block it to work as a phosphatase activator. This is the first report providing initial evidence that the two opposing activities of factor FA can be selectively modulated in a reciprocal manner by various triggers, suggesting that a simultaneous coordinate control mechanism may well be involved in regulating the activities of factor FA in the cell.  相似文献   

10.
As compared to normal people, the lymphocytes of patients with schizophrenia were found to have an impairment of ATP. Mg-dependent protein phosphatase activation. More importantly, the impaired protein phosphatase activation in the lymphocytes of schizophrenic patients could be consistently and completely restored to normal by exogenous pure protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) (the activating factor of ATP.Mg-dependent protein phosphatase), indicating that the molecular mechanism for the impaired protein phosphatase activation in schizophrenic patients may be due to a functional loss of kinase FA /GSK-3α immunoblotting and kinase activity analysis in an anti-kinase FA /GSK-3α immunoprecipitate further demonstrate that both cellular activities and protein levels of kinase FA /GSK-3α in the lymphocytes of schizophrenic patients were greatly impared as compared to normal controls. Statistical analysis revealed that the lymphocytes isolated from 37 normal people contain kinase FA /GSK-3α activity in the high levels of 14.8 ± 2.4 units/mg of cell protein, whereas the lymphocytes of 48 patients with schizophrenic disorder contain kinase FA /GSK-3α activity in the low levels of 2.8 ± 1.6 units/mg, indicating that the different levels of kinase FA /GSK-3α activity between schizophrenic patients and normal people are statistically significant. Taken together, the results provide intial evidence that patients with schizophrenic disorder may have a common impairment in the protein levels and cellular activities of kinase FA /GSK-3α, a multisubstrate protein kinase and a multisubstrate protein phosphatase activator in their lymphocytes. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Substantial amounts of ATP.Mg-dependent phosphorylase phosphatase (Fc. M) and its activator (kinase FA) were identified and extensively purified from pig brain, in spite of the fact that glycogen metabolism in the brain is of little importance. The brain Fc.M was completely inactive and could only be activated by ATP.Mg and FA, isolated either from rabbit muscle or pig brain. Kinetical analysis of the dephosphorylation of endogenous brain protein indicates that Fc.M could dephosphorylate 32P-labeled myelin basic protein (MBP) and [32P]phosphorylase alpha at a comparable rate and moreover, this associated MBP phosphatase activity was also strictly kinase FA/ATP.Mg-dependent, demonstrating that MBP is a potential substrate for Fc.M in the brain. By manipulating MBP and inhibitor-2 as specific potent phosphorylase phosphatase inhibitors, we further demonstrate that 1) Fc.M contains two distinct catalytic sites to dephosphorylate different substrates, and 2) brain MBP may be a physiological trigger involved in the regulation of protein phosphatase substrate specificity in mammalian nervous tissues.  相似文献   

12.
A protein (FA) has been isolated from rabbit muscle which has two functions: one is the activation of the ATP x Mg-dependent phosphatase (see previous paper) (1) and the second is the phosphorylation and concomitant inactivation of glycogen synthase, independent from cyclic AMP or Ca ions. The two activities co-purify throughout the purification scheme, and reside in the single protein band that the purified preparation shows in discontinuous acrylamide gel electrophoresis. Heat inactivation experiments with the purified protein showed a parallel decrease of both activities with time. GTP could efficiently replace the ATP in both reactions. Sodium dodecyl sulfate-gel electrophoresis also shows a single protein-stained band corresponding to a Mr = approximately 50,000 and sucrose density gradient centrifugation gave a value of 45,000. The enzyme incorporates only 1 mol of phosphate/mol of synthase monomer (85,000 daltons) and brings the activity ratio (+/- glucose-6-P) down to less than 0.05. Kinetic studies suggest that FA exerts its two activities in quite different ways: the activation of the ATP x Mg-dependent phosphatase is bought about by a protein-protein interaction (FA x FC complex formation) with ATP x Mg as a necessary cofactor, whereas for the inactivation of synthase, FA is a cyclic AMP- and Ca-independent kinase.  相似文献   

13.
An ATP x Mg-dependent protein phosphatase (FC) was purified to near homogeneity from rabbit muscle. The enzyme was completely devoid of any spontaneous activity but could be activated by a protein activator (FA) in the presence of ATP and Mg ions. The inactive phosphatase migrated as a single protein band on sodium dodecyl sulfate-gel electrophoresis, and in discontinuous gel electrophoresis, where the potential phosphatase activity was located in the main protein band. The molecular weight determined by sodium dodecyl sulfate electrophoresis or by sucrose density centrifugation was found to be 70,000. FC migrated on gel filtration as a 140,000 molecular weight species. The activation by FA was not paralleled by an incorporation of [32P]-phosphate into the ATP x Mg-dependent phosphatase, and from the kinetics of activation a protein-protein interaction with ATP x Mg as a necessary factor, can be inferred as the mechanism of activation. After activation by FA and ATP X Mg, the purified enzyme had a specific activity of 10,000 units/mg of protein, and a Km for rabbit muscle phosphorylase a of approximately 1.0 mg/ml. The activated enzyme did not release [32P]phosphate from 32[-labeled rabbit muscle synthase b, prepared from glucagon-treated dogs. It did, however, remove all the 32P label from phosphorylase b kinase, autophosphorylated to the level of 2.0 mol/mol of 1.3 X 10(6) molecular weight.  相似文献   

14.
1. Although Mn2+ could mimic kinase FA/ATP.Mg to activate ATP.Mg-dependent protein phosphatase, strong indications have been obtained that the Mn2(+)-activated and FA/ATP.Mg-activated phosphatase forms are not identical in terms of their substrate specificities and catalytic properties. 2. Both Mn2(+)-activated and FA/ATP.Mg-activated phosphatase forms readily dephosphorylate 32P-labeled phosphorylase a and myelin basic protein (MBP), however the Mn2(+)-activated phosphatase displays activity preferentially against [32P]MBP and FA/ATP.Mg-activated phosphatase preferentially dephosphorylates [32P]phosphorylase a, representing a unique control mechanism to regulate the substrate specificity of multisubstrate protein phosphatase in mammalian tissues.  相似文献   

15.
The deinhibitor protein, responsible for the decreased sensitivity of the ATP,Mg-dependent protein phosphatase to inhibitor-1 and the modulator protein, is inactivated by cyclic AMP-dependent protein kinase and reactivated by dephosphorylation. The specificity of this reaction was tested with the ATP,Mg-dependent phosphatase in its activated or spontaneously active form, four different forms of polycation-stimulated phosphatases (PCSH, PCSM, PCSL and PCSC) and calcineurin. Only the high -Mr polycation-stimulated protein phosphatase (PCSH), but not its catalytic subunit (PCSC), shows a high degree of specificity for the deinhibitor protein. Deinhibitor phosphatase activity of PCSH is affected neither by polycations nor by Mn ions.  相似文献   

16.
The small molecular weight (± 9,000) heat stable deinhibitor protein, isolated from dog liver, not only protects the multisubstrate protein phosphatase from inhibition by inhibitor-1 and the modulator protein. It prevents the conversion of the active enzyme to the ATP,Mg-dependent enzyme form brought about by the modulator protein, and also affects the activation of the ATP,Mg-dependent protein phosphatase, probably by stabilizing the enzyme in its active conformation during the reversible activation by protein kinase FA. Therefore the deinhibitor protein could be an important factor in the process of glycogen synthesis, which requires glycogen synthase and phosphorylase as dephosphorylated enzymes.  相似文献   

17.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

18.
The phosphorylation by casein kinase TS (II) of the modulator protein of the ATP, Mg-dependent phosphatase increases after preincubation with the PCSH1 phosphatase or with the catalytic subunit of the ATP, Mg-dependent phosphatase. Dephosphorylation by the two phosphatases combined leads to the incorporation of 2 mol phosphate per mol modulator (at Ser residues). Occupancy of the ATP, Mg-dependent phosphatase phosphorylation site(s) is a negative determinant in the phosphorylation of the modulator by kinase TS. Among the PCS phosphatases PCSH1 shows the highest activity toward the 32P-Ser residues labeled by kinase TS in untreated or previously dephosphorylated modulator, while the ATP, Mg-dependent phosphatase is totally ineffective. Protamine stimulates all phosphatase activities, so that the catalytic subunit of the ATP, Mg-dependent phosphatase becomes almost as effective as the PCSC phosphatase in dephosphorylating the kinase TS sites.  相似文献   

19.
A rat liver cAMP-independent protein kinase that phosphorylates peptide b of ATP-citrate lyase (Ramakrishna, S., Pucci, D. L., and Benjamin, W. B. (1983) J. Biol. Chem. 258, 4950-4956) has been purified to apparent homogeneity. The molecular weight, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, sucrose density gradient, and by gel filtration, was found to be 36,000. This protein kinase phosphorylates in vitro ATP-citrate lyase, acetyl-CoA carboxylase, and glycogen synthase and does not phosphorylate phosphorylase, phosphorylase kinase, histone, phosvitin, and casein. It has Fa (activity factor) activity stimulating the ATP X Mg-dependent phosphatase and is therefore named a multifunctional protein kinase. This kinase differs from glycogen synthase kinase-3 with regard to substrate specificity, kinetic parameters, and physicochemical properties.  相似文献   

20.
Protein kinase FA (an activator of the ATP.Mg-dependent multifunctional protein phosphatase) has been identified in both cytosol and plasma membrane isolated from human platelets. The FA activity in the cytosol is active whereas the FA activity in the membrane is inactive. Quantitative analysis further indicates that approximately 90% of total FA is present in the membrane whereas only 10% of FA is localized in the cytosol, suggesting that the inactive membrane-associated FA might be regulated. This notion has subsequently been demonstrated that exposure of platelets to physiological concentrations of insulin for only 1 min resulted in an increase in cytosolic FA activity to about 300% of control values in the absence of insulin and in a corresponding decrease in FA activity in the membrane. It is concluded that the molecular basis for insulin action on cellular metabolism may partly be mediated through the activation and translocation of protein kinase FA in the membrane. It is suggested that redistribution of protein kinase FA may represent a transmembrane signal of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号