首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic disulfide isomerase DsbC. DsbD contains two periplasmically oriented domains at the N- and C-terminus (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Here, we show that Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle of DsbD. We solved the crystal structure of this catalytic intermediate at 2.85 A resolution, which revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD. In addition, we have measured the kinetics of all functional and nonfunctional disulfide exchange reactions between redox-active, periplasmic proteins and protein domains from the oxidative DsbA/B and the reductive DsbC/D pathway. We show that both pathways are separated by large kinetic barriers for nonfunctional disulfide exchange between components from different pathways.  相似文献   

2.
DsbD from Escherichia coli transports electrons from cytoplasmic thioredoxin across the inner membrane to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of three domains: a periplasmic N-terminal domain, a central transmembrane domain (tmDsbD) and a periplasmic C-terminal domain. Each domain contains two essential cysteine residues that are required for electron transport. In contrast to the quinone reductase DsbB, HPLC analysis of the methanol/hexane extracts of purified DsbD revealed no presence of quinones, suggesting that the tmDsbD interacts with thioredoxin and the periplasmic C-terminal domain exclusively via disulfide exchange. We also demonstrate that a DsbD variant containing only the redox-active cysteine pair C163 and C285 in tmDsbD, reconstituted into liposomes, has a redox potential of − 0.246 V. The results show that all steps in the DsbD-mediated electron flow are thermodynamically favorable.  相似文献   

3.
Escherichia coli DsbD transports electrons from cytoplasmic thioredoxin to periplasmic target proteins. DsbD is composed of an N-terminal (nDsbD) and a C-terminal (cDsbD) periplasmic domain, connected by a central transmembrane domain. Each domain possesses two cysteine residues essential for electron transport. The transport proceeds via disulfide exchange reactions from cytoplasmic thioredoxin to the central transmembrane domain and via cDsbD to nDsbD, which then reduces the periplasmic target proteins. We determined four high-resolution structures of cDsbD: oxidized (1.65 A resolution), chemically reduced (1.3 A), photo-reduced (1.1 A) and chemically reduced at pH increased from 4.6 to 7. The latter structure was refined at 0.99 A resolution, the highest achieved so far for a thioredoxin superfamily member. The data reveal unprecedented structural details of cDsbD, demonstrating that the domain is very rigid and undergoes hardly any conformational change upon disulfide reduction or interaction with nDsbD. In full agreement with the crystallographic results, guanidinium chloride-induced unfolding and refolding experiments indicate that oxidized and reduced cDsbD are equally stable. We confirmed the structural rigidity of cDsbD by molecular dynamics simulations. A remarkable feature of cDsbD is the pKa of 9.3 for the active site Cys461: this value, determined using two different experimental methods, surprisingly was around 2.5 units higher than expected on the basis of the redox potential. Additionally, taking advantage of the very high quality of the cDsbD structures, we carried out pKa calculations, which gave results in agreement with the experimental findings. In conclusion, our wide-scope analysis of cDsbD, encompassing atomic-resolution crystallography, computational chemistry and biophysical measurements, highlighted two so far unrecognized key aspects of this domain: its unusual redox properties and extreme rigidity. Both are likely to be correlated to the role of cDsbD as a covalently linked electron shuttle between the membrane domain and the N-terminal periplasmic domain of DsbD.  相似文献   

4.
DsbD from Escherichia coli transports two electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of an N-terminal periplasmic domain (nDsbD), a C-terminal periplasmic domain, and a central transmembrane domain. Each domain possesses two cysteines required for electron transport. Herein, we demonstrate fast (3.9 x 10(5) M(-1)s(-1)) and direct disulfide exchange between nDsbD and CcmG, a highly specific disulfide reductase essential for cytochrome c maturation. We determined the crystal structure of the disulfide-linked complex between nDsbD and the soluble part of CcmG at 1.94 A resolution. In contrast to the other two known complexes of nDsbD with target proteins, the N-terminal segment of nDsbD contributes to specific recognition of CcmG. This and other features, like the possibility of using an additional interaction surface, constitute the structural basis for the adaptability of nDsbD to different protein substrates.  相似文献   

5.
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.  相似文献   

6.
The cytoplasmic membrane protein DsbD keeps the periplasmic disulfide isomerase DsbC reduced, using the cytoplasmic reducing power of thioredoxin. DsbD contains three domains, each containing two reactive cysteines. One membrane-embedded domain, DsbDbeta, transfers electrons from thioredoxin to the carboxy-terminal thioredoxin-like periplasmic domain DsbDgamma. To evaluate the role of conserved amino acid residues in DsbDbeta in the electron transfer process, we substituted alanines for each of 19 conserved amino acid residues and assessed the in vivo redox states of DsbC and DsbD. The mutant DsbDs of 11 mutants which caused defects in DsbC reduction showed relatively oxidized redox states. To analyze the redox state of each DsbD domain, we constructed a thrombin-cleavable DsbD (DsbDTH) from which we could generate all three domains as separate polypeptide chains by thrombin treatment in vitro. We divided the mutants with strong defects into two classes. The first mutant class consists of mutant DsbDbeta proteins that cannot receive electrons from cytoplasmic thioredoxin, resulting in a DsbD that has all six of its cysteines disulfide bonded. The second mutant class represents proteins in which the transfer of electrons from DsbDbeta to DsbDgamma appears to be blocked. This class includes the mutant with the most clear-cut defect, P284A. We relate the properties of the mutants to the positions of the amino acids in the structure of DsbD and discuss mechanisms that would interfere with the electron transfer process.  相似文献   

7.
Isomerization of disulfide bonds is vital for the proper folding of proteins that possess multiple disulfides. In prokaryotes, the catalytic pathway responsible for disulfide isomerization involves thioredoxin, thioredoxin reductase, and the DsbC, DsbG, and DsbD proteins. To be active as isomerases, DsbC and DsbG must be kept reduced. This task is performed by the cytoplasmic membrane protein DsbD. DsbD in turn is reduced by the cytoplasmic thioredoxin and is composed of three domains. The beta domain is membrane-embedded, whereas the alpha and gamma domains are localized to the periplasm. It had been proposed that electrons are transferred within DsbD by a succession of disulfide exchange reactions between the three domains. To test this model using biochemical methods, we purified to homogeneity different polypeptides corresponding to the alpha, beta, gamma, and betagamma domains. Using these domains, we could reconstitute a DsbD activity and, for the first time, reconstitute in vitro the electron transport pathway from NADPH and thioredoxin to DsbC and DsbG. We showed that electrons are transferred from thioredoxin to the beta domain then successively to the gamma domain, the alpha domain, and finally on to DsbC or DsbG. We also determined the redox potential of the gamma domain to be -241 mV, and that of the alpha domain was found to be -229 mV. This shows that the direction of electron flow within DsbD is thermodynamically driven.  相似文献   

8.
E J Stewart  F Katzen    J Beckwith 《The EMBO journal》1999,18(21):5963-5971
The active-site cysteines of the Escherichia coli periplasmic protein disulfide bond isomerase (DsbC) are kept reduced by the cytoplasmic membrane protein, DsbD. DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm. To understand the mechanism of this unusual mode of electron transfer, we have undertaken a genetic analysis of DsbD. In the process, we discovered that the previously suggested start site for the DsbD protein is incorrect. Our results permit the formulation of a model of DsbD membrane topology. Also, we show that six cysteines of DsbD conserved among DsbD homologs are essential for the reduction of DsbC, DsbG and for a reductive pathway leading to c-type cytochrome assembly in the periplasm. Our findings suggest a testable model for the DsbD-dependent transfer of electrons across the membrane, involving a cascade of disulfide bond reduction steps.  相似文献   

9.
The periplasmic C-terminal domain of the Escherichia coli DsbD protein (cDsbD) has a thioredoxin fold. The two cysteine residues in the CXXC motif serve as the reductant for the disulfide bond of the N-terminal domain which can in turn act as a reductant for various periplasmic partners. The resulting disulfide bond in cDsbD is reduced via an unknown mechanism by the transmembrane helical domain of the protein. We show by NMR analysis of (13)C, (15)N-labelled cDsbD that the protein is rigid, is stable to extremes of pH and undergoes only localized conformational changes in the vicinity of the CXXC motif, and in adjacent regions of secondary structure, upon undergoing the reduced/oxidized transition. pK(a) values have been determined, using 2D NMR, for the N-terminal cysteine of the CXXC motif, Cys461, as well as for other active-site residues. It is demonstrated using site-directed mutagenesis that the negative charges of the side-chains of Asp455 and Glu468 in the active site contribute to the unusually high pK(a) value, 10.5, of Cys461. This value is higher than expected from knowledge of the reduction potential of cDsbD. In a double mutant of cDsbD, D455N/E468Q, the pK(a) value of Cys461 is lowered to 8.6, a value close to that expected for an unperturbed cysteine residue. The pK(a) value of the second cysteine in wild-type cDsbD, Cys464, is significantly higher than the maximum pH value that was studied (pH 12.2).  相似文献   

10.
The Escherichia coli periplasmic protein DsbC is active both in vivo and in vitro as a protein disulfide isomerase. For DsbC to attack incorrectly formed disulfide bonds in substrate proteins, its two active-site cysteines should be in the reduced form. Here we present evidence that, in wild-type cells, these two cysteines are reduced. Further, we show that a pathway involving the cytoplasmic proteins thioredoxin reductase and thioredoxin and the cytoplasmic membrane protein DsbD is responsible for the reduction of these cysteines. Thus, reducing potential is passed from cytoplasmic electron donors through the cytoplasmic membrane to DsbC. This pathway does not appear to utilize the cytoplasmic glutathione-glutaredoxin pathway. The redox state of the active-site cysteines of DsbC correlates quite closely with its ability to assist in the folding of proteins with multiple disulfide bonds. Analysis of the activity of mutant forms of DsbC in which either or both of these cysteines have been altered further supports the role of DsbC as a disulfide bond isomerase.  相似文献   

11.
The bacterial protein DsbD transfers reductant from the cytoplasm to the otherwise oxidizing environment of the periplasm. This reducing power is required for several essential pathways, including disulfide bond formation and cytochrome c maturation. DsbD includes a transmembrane domain (tmDsbD) flanked by two globular periplasmic domains (nDsbD/cDsbD); each contains a cysteine pair involved in electron transfer via a disulfide exchange cascade. The final step in the cascade involves reduction of the Cys103-Cys109 disulfide of nDsbD by Cys461 of cDsbD. Here we show that a complex between the globular periplasmic domains is trapped in vivo only when both are linked by tmDsbD. We have found previously (Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370 ,643 -658) that the attacking cysteine (Cys461) in isolated cDsbD has a high pKa value (10.5) that makes this thiol relatively unreactive toward the target disulfide in nDsbD. Here we show using NMR that active-site pKa values change significantly when cDsbD forms a complex with nDsbD. This modulation of pKa values is critical for the specificity and function of cDsbD. Uncomplexed cDsbD is a poor nucleophile, allowing it to avoid nonspecific reoxidation; however, in complex with nDsbD, the nucleophilicity of cDsbD increases permitting reductant transfer. The observation of significant changes in active-site pKa values upon complex formation has wider implications for understanding reactivity in thiol:disulfide oxidoreductases.DsbD is a unique protein that transfers reductant across the cytoplasmic membrane to the periplasm in many Gram-negative bacteria (1, 2). Provision of reductant to the periplasm is required because this compartment is otherwise considered to be an oxidizing environment (2). DsbD includes three domains, each containing a pair of cysteine residues that perform a series of disulfide exchange reactions (Fig. 1A). In the first step, the transmembrane domain (tmDsbD) accepts electrons from thioredoxin in the cytoplasm; these are then transferred to the periplasmic C-terminal domain (cDsbD) and finally to the N-terminal domain (nDsbD), which is also located in the periplasm (3-5). nDsbD acts as a junction point for several pathways that require reductant, including the general disulfide isomerase system and the pathway that is thought to reduce the cysteine thiols of apocytochromes in the cytochrome c biogenesis pathway (6). In Gram-positive bacteria, CcdA, an integral membrane protein, and ResA, which has a thioredoxin fold, provide the reductant required for cytochrome c maturation (7).Open in a separate windowFIGURE 1.Schematic representation of DsbD. A, proposed pathway of electron flow from thioredoxin (TrxA) in the cytoplasm, via the three domains of DsbD, to the cytochrome c maturation (Ccm) and disulfide bond isomerization pathways in the periplasm is shown. The crystal structure of nDsbD is from Protein Data Bank code 1L6P (8), cDsbD from Protein Data Bank code 1UC7 (11), and the nDsbD-cDsbD complex from Protein Data Bank code 1VRS (12). The cyan boxes indicate the thrombin cleavage sites introduced into full-length DsbD to allow detection of the nDsbD-cDsbD complex following its formation in vivo. The cysteine residues are shown in yellow. B, schematic representation of the active site of cDsbD in the covalent complex with nDsbD (12). Some active-site residues of cDsbD are indicated in stick representation and the inter-domain disulfide (Cys461-SS-Cys109) is shown in yellow.Structural studies have sought to explain how DsbD functions and interacts with its various partners. The structures of the two soluble periplasmic domains have been determined (Fig. 1A, left). nDsbD has an immunoglobulin-like structure (8, 9) and is the only known thiol:disulfide oxidoreductase with this fold. cDsbD has the more typical thioredoxin fold found in many oxidoreductases; this has the characteristic active-site CXXC motif (10, 11). A covalent complex between single-cysteine variants of each of these two domains was produced in vitro and its x-ray structure solved (12), revealing the interface between the two domains (Fig. 1A, right). Although this mixed disulfide is accepted as a physiological intermediate in the function of DsbD, an in vivo complex between the two soluble domains has not been reported previously (3). Further complexes between nDsbD and its other physiological partners have also been trapped and their structures examined (9, 13). Interestingly, all of the interaction partners of nDsbD are thioredoxin-like proteins; similarities in their folds are congruous with common interaction interfaces (14). However, only cDsbD will reduce nDsbD, whereas nDsbD will reduce several partners. This raises questions about how the direction of reductant flow is maintained and controlled within the series of disulfide-exchange reactions.As part of our structural and mechanistic characterization of DsbD and its domains in solution, we have previously measured by NMR the pKa values of the active-site cysteine pair, Cys461 and Cys464, of cDsbD (numbered according to the full-length Escherichia coli DsbD sequence) (15). An unusually high pKa value of 10.5 was measured for the N-terminal cysteine of the CXXC motif, Cys461, and the pKa value of the second cysteine, Cys464, was significantly higher than the maximum pH value that was studied (pH 12.2). The pKa value of 10.5 is the highest reported for the N-terminal cysteine of the CXXC motif in a thioredoxin fold. The striking consequence of the elevated pKa value is that the active-site cysteine of cDsbD, Cys461, is not strongly nucleophilic, raising critical questions about how this cysteine reacts with the disulfide in nDsbD. It was demonstrated using site-directed mutagenesis that the negatively charged side chains of Asp455 and Glu468, which are located close to the CXXC motif (Fig. 1B), are responsible for the unusually high pKa value of Cys461; mutation of one or both of these residues to Asn and Gln, respectively, resulted in decreases in the pKa value of Cys461 from 10.5 to 9.9 (E468Q), to 9.3 (D455N), and to 8.6 (D455N/E468Q). The pKa values for Asp455 were found to be 5.9 and 6.6 in oxidized and reduced cDsbD; these values are significantly higher than the value of ∼4 for an unperturbed aspartic acid. We postulated that the properties of the amino acid side chains in the immediate environment of the cysteines in cDsbD would change upon complex formation with nDsbD, changing the reactivity of the cysteines and explaining how the reaction between the two domains is initiated (15). Specifically, we proposed that an increase in the pKa value of Asp455 upon complex formation would lead to a decrease in the pKa value of Cys461, thereby making it a better nucleophile. Stirnimann et al. (10) previously presented pKa calculations suggesting an increase in the Asp455 pKa value upon complex formation.The aim of this work has been to determine the molecular basis of the control of the reactivity of the active-site cysteine residues in cDsbD, using NMR to compare the active-site properties of cDsbD alone and in its physiological complex with nDsbD. We demonstrate that the pKa value of Asp455 is elevated by at least 1.1 pH units when cDsbD forms a complex with nDsbD. This modulation of the pKa value is critical for the specificity and function of cDsbD. These in vitro studies are complemented by in vivo studies on complex formation, in which we have trapped the nDsbD-cDsbD complex for the first time. The results of our experiments explain how the intramolecular disulfide cascade within the soluble domains of DsbD functions, and demonstrate the importance of the transmembrane domain in controlling and facilitating complex formation between the soluble domains.  相似文献   

12.
The protein disulfide bond isomerase DsbC catalyzes the rearrangement of incorrect disulfide bonds during oxidative protein folding in the periplasm of Escherichia coli. The active site cysteines of DsbC are maintained in the active reduced form by the transmembrane electron transporter DsbD. DsbD obtains electrons from the cytoplasm, transports them across the inner membrane, and passes them onto periplasmic substrates, such as DsbC. The electron transport process involves several thiol disulfide exchange reactions between different classes of thiol oxidoreductase. We were able to trap the final electron transport reaction using active site mutants yielding a stable DsbC-DsbDalpha complex. This disulfide cross-linked complex was purified to homogeneity and crystallized. Dehydration of the tetragonal crystals changed the unit cell dimensions from a approximately b = 73 A, c = 267.5 A to a = b = 68.9 A, c = 230.3 A, reducing the cell volume by 23% and the solvent content from 55 to 41%. Crystal dehydration and cryo-cooling improved the diffraction quality of the crystals from 7 to 2.3 A resolution.  相似文献   

13.
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.  相似文献   

14.
Escherichia coli DsbD transports electrons across the plasma membrane, a pathway that leads to the reduction of protein disulfide bonds. Three secreted thioredoxin-like factors, DsbC, DsbE, and DsbG, reduce protein disulfide bonds whereby an active site C-X-X-C motif is oxidized to generate a disulfide bond. DsbD catalyzes the reduction of the disulfide of DsbC, DsbE, and DsbG but not of the thioredoxin-like oxidant DsbA. The reduction of DsbC, DsbE, and DsbG occurs by transport of electrons from cytoplasmic thioredoxin to the C-terminal thioredoxin-like domain of DsbD (DsbD(C)). The N-terminal domain of DsbD, DsbD(N), acts as a versatile adaptor in electron transport and is capable of forming disulfides with oxidized DsbC, DsbE, or DsbG as well as with reduced DsbD(C). Isolated DsbD(N) is functional in electron transport in vitro. Crystallized DsbD(N) assumes an immunoglobulin-like fold that encompasses two active site cysteines, C103 and C109, forming a disulfide bond between beta-strands. The disulfide of DsbD(N) is shielded from the environment and capped by a phenylalanine (F70). A model is discussed whereby the immunoglobulin fold of DsbD(N) may provide for the discriminating interaction with thioredoxin-like factors, thereby triggering movement of the phenylalanine cap followed by disulfide rearrangement.  相似文献   

15.
Reduction of non-native protein disulphides in the periplasm of Escherichia coli is catalysed by three enzymes, DsbC, DsbG and DsbE, each of which harbours a catalytic Cys-X-X-Cys dithiol motif. This dithiol motif requires continuous reduction for activity. Genetic evidence suggests that the source of periplasmic reducing power resides within the cytoplasm, provided by thioredoxin (trxA) and thioredoxin reductase (trxB). Cytoplasmic electrons donated by thioredoxin are thought to be transferred into the periplasm via the DsbD membrane protein. To understand the molecular nature of electron transfer, we have analysed the membrane topology of DsbD. DsbD is exported by an N-terminal signal peptide. The N- and C-terminal domains are positioned in the periplasmic space, connected by eight transmembrane segments. Electron transfer was shown to require five cysteine sulphydryl of DsbD. Trans complementation of mutant DsbD molecules revealed intermolecular electron transfer. We discuss a model whereby the membrane-embedded disulphides of DsbD accept electrons from cytoplasmic thioredoxin and transfer them to the C-terminal periplasmic dithiol motif of DsbD.  相似文献   

16.
Modular organization of proteins has been postulated as a widely used strategy for protein evolution. The multidomain transmembrane protein DsbD catalyzes the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Most bacterial species do not have DsbD, but instead their genomes encode a much smaller protein, CcdA, which resembles the central hydrophobic domain of DsbD. We used reciprocal heterologous complementation assays between E.coli and Rhodobacter capsulatus to show that, despite their differences in size and structure, DsbD and CcdA are functional homologs. While DsbD transfers reducing potential to periplasmic protein disulfide bond isomerases and to the cytochrome c thioreduction pathway, CcdA appears to be involved only in cytochrome c biogenesis. Our findings strongly suggest that, by the acquisition of additional thiol-redox active domains, DsbD expanded its substrate specificity.  相似文献   

17.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

18.
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide.  相似文献   

19.
Viability and pathogenicity of Gram-negative bacteria is linked to the cytochrome c maturation and the oxidative protein folding systems in the periplasm. The transmembrane reductant conductor DsbD is a unique protein which provides the necessary reducing power to both systems through thiol-disulfide exchange reactions in a complex network of protein-protein interactions. The N-terminal domain of DsbD (nDsbD) is the delivery point of the reducing power originating from cytoplasmic thioredoxin to a variety of periplasmic partners. Here we report (1)H, (13)C and (15)N assignments for resonances of nDsbD in its oxidized and reduced states. These assignments provide the starting point for detailed investigations of the interactions of nDsbD with its protein partners.  相似文献   

20.
Katzen F  Beckwith J 《Cell》2000,103(5):769-779
The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号