首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

2.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

3.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

4.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

5.
LIMITATIONS OF PHOTOSYNTHESIS IN DIFFERENT REGIONS OF THE ZEA MAYS LEAF   总被引:3,自引:0,他引:3  
The progressive development of the photosynthetic apparatus occurring along the length of the Zea mays leaf offers a convenient system with which to examine the limitations to photosynthetic CO2 assimilation during biogenesis of a C4 leaf. Changes in light-induced O2 evolution and CO2 assimilation, chlorophyll content, activity of PEP-carboxylase, NADP-malic enzyme and the 'R5P system' (consisting of d -ribose-5-phosphate-keto isomerase, ATP- d -ribulose-5 phosphate 1-phosphotransferase and d -ribulose-1,5-bisphosphate carboxylase) and fluorescence emission characteristics were examined along the length of the second leaf of 7-day-old plants grown under a diurnal light regime. The results suggest that the major limitation to CO2 assimilation in the leaf sheath lies within the chlorenchyma and is either energy supply for carboxylation or the capacity of key photosynthetic enzymes. In the leaf blade stomatal resistance to CO2 diffusion constitutes a major fraction of the total leaf resistance to CO2 assimilation implicating the stoma as the major limiting factor to photosynthetic CO2 assimilation.  相似文献   

6.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

7.
Elevated atmospheric CO2 concentration ([CO2]) stimulates seed mass production in many species, but the extent of stimulation shows large variation among species. We examined (1) whether seed production is enhanced more in species with lower seed nitrogen concentrations, and (2) whether seed production is enhanced by elevated [CO2] when the plant uses more N for seed production. We grew 11 annuals in open top chambers that have different [CO2] conditions (ambient: 370 μmol mol−1, elevated: 700 μmol mol−1). Elevated [CO2] significantly increased seed production in six out of 11 species with a large interspecific variation (0.84–2.12, elevated/ambient [CO2]). Seed nitrogen concentration was not correlated with the enhancement of seed production by elevated [CO2]. The enhancement of seed production was strongly correlated with the enhancement of seed nitrogen per plant caused by increased N acquisition during the reproductive period. In particular, legume species tended to acquire more N and produced more seeds at elevated [CO2] than non-nitrogen fixing species. Elevated [CO2] little affected seed [N] in all species. We conclude that seed production is limited primarily by nitrogen availability and will be enhanced by elevated [CO2] only when the plant is able to increase nitrogen acquisition.  相似文献   

8.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

9.
Fruit effects on photosynthesis in Prunus persica   总被引:1,自引:0,他引:1  
Seasonal measurements of net CO2 assimilation, leaf conductance and mesophyll conductance were made in the field on mature, fruiting and defruited Prunus persica L. Batsch trees. During early stages of fruit growth there were no significant differences in leaf gas exchange characteristics between fruiting and defruited trees. During the early part of the last stage of fruit growth, CO2 assimilation rates were 11–15% higher in fruiting trees than defruited trees. These increased assimilation rates corresponded with approximately 30% increases in leaf conductance and only minor changes in mesophyll conductances or leaf CO2 assimilation capacity as indicated by leaf nitrogen content. It is concluded that under the field conditions of this study the fruit effect on photosynthesis is primarily related to stomatal behavior.  相似文献   

10.
Dactylis glomerata was grown hydroponically in a controlled environment at ambient (360 μl l−1) or elevated (680 μl l−1) CO2 and four concentrations of nitrogen (0.15, 0.6, 1.5 and 6.0 m M NO3), to test the hypothesis that reduction of photosynthetic capacity at elevated [CO2] is dependent on N availability and mediated by a build-up of non-structural carbohydrates. Photosynthetic capacity of the youngest fully expanded leaf (leaf 5, 2 days after full expansion) was reduced in CO2-enriched plants at low, but not high N supply and so the stimulation of net photosynthesis by CO2 enhancement was less at low than at high N supply. CO2 enrichment resulted in a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content on a leaf area basis at 0.6 and 1.5 m M NO3, but not at 0.15 and 6.0 m M NO3, and had no effect on the total N content of the leaf on an area basis. However, decreases in Rubisco content could be primarily accounted for by a decrease in total N content of leaves, independent of [CO2]. A doubling of the Rubisco content by increasing the N supply beyond 0.6 m M had only a marginal effect on the maximum carboxylation velocity in vivo, suggesting that the fraction of inactive Rubisco increased with increasing N supply. Although CO2-enriched plants accumulated more non-structural carbohydrates in the leaf, the reduction of photosynthetic capacity at low N supply was not mediated simply by a build-up of carbohydrates. In D . glomerata , the photosynthetic capacity was mainly determined by the total N content of the leaf.  相似文献   

11.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

12.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

13.
The response of Phaseolus vulgaris L. cv. Contender grown under controlled environment at either ambient or elevated (360 and 700 μmol mol-1, respectively) CO2 concentrations ([CO2]), was monitored from 10 days after germination (DAG) until the onset of senescence. Elevated CO2 had a pronounced effect on total plant height (TPH), leaf area (LA), leaf dry weight (LD), total plant biomass (TB) accumulation and specific leaf area (SLA). All of these were significantly increased under elevated carbon dioxide with the exception of SLA which was significantly reduced. Other than high initial growth rates in CO2-enriched plants, relative growth rates remained relatively unchanged throughout the growth period. While the trends in growth parameters were clearly different between [CO2], some physiological processes were largely transient, in particular, net assimilation rate (NAR) and foliar nutrient concentrations of N, Mg and Cu. CO2 enrichment significantly increased NAR, but from 20 DAG, a steady decline to almost similar levels to those measured in plants grown under ambient CO2 occurred. A similar trend was observed for leaf N content where the loss of leaf nitrogen in CO2-enriched plants after 20 DAG, was significantly greater than that observed for ambient-CO2 plants. Under enhanced CO2, the foliar concentrations of K and Mn were increased significantly whilst P, Ca, Fe and Zn were reduced significantly. Changes in Mg and Cu concentrations were insignificant. In addition. high CO2 grown plants exhibited a pronounced leaf discoloration or chlorosis, coupled with a significant reduction in leaf longevity.  相似文献   

14.
1. The photosynthetic response to elevated CO2 and nutrient stress was investigated in Agrostis capillaris, Lolium perenne and Trifolium repens grown in an open-top chamber facility for 2 years under two nutrient regimes. Acclimation was evaluated by measuring the response of light-saturated photosynthesis to changes in the substomatal CO2 concentration.
2. Growth at elevated CO2 resulted in reductions in apparent Rubisco activity in vivo in all three species, which were associated with reductions of total leaf nitrogen content on a unit area basis for A. capillaris and L. perenne . Despite this acclimation, photosynthesis was significantly higher at elevated CO2 for T. repens and A. capillaris , the latter exhibiting the greatest increase of carbon uptake at the lowest nutrient supply.
3. The photosynthetic nitrogen-use efficiency (the rate of carbon assimilation per unit leaf nitrogen) increased at elevated CO2, not purely owing to higher values of photosynthesis at elevated CO2, but also as a result of lower leaf nitrogen contents.
4. Contrary to most previous studies, this investigation indicates that elevated CO2 can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen-use efficiency may be a critical determinant of competition within low nutrient ecosystems and low input agricultural systems.  相似文献   

15.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

16.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

17.
Abstract. The objective of the present work was to study the effect of nitrogen deficiency on drought sensitivity of tall fescue plants. The authors compared photosynthetic and stomatal behaviour of plants grown at either high (8 mol m−3) or low (0.5 mol m−3) nitrogen levels during a drought cycle followed by rehydration. Other processes investigated were stomatal and non-stomatal inhibition of leaf photosynthesis, water use efficiency and leaf rolling. Plants were grown in pots in controlled conditions on expanded clay. A Wescor in situ hygrometer placed on the leaf base outside the assimilation chamber permitted, simultaneously to leaf gas exchange measurements, monitoring of leaf water potential. Drought was imposed by withholding water from the pot. CO2 uptake and stomatal conductance decreased and leaves started to roll at a lower leaf water potential in the high-N than in the low-N grown plants. Stomatal inhibition of leaf photosynthesis seemed larger in the low-N than in the high-N plants. Water-use efficiency increased more in the high-N than in the low-N grown plants during the drought. The decrease of photosynthesis was largely reversible after rehydration in low-N but not in high-N leaves. The authors suggest that low-N plants avoid water deficit rather than tolerate it.  相似文献   

18.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

19.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

20.
A recognized invasive weed, Canada thistle ( Cirsium arvense L. Scop.) was grown at ambient and pre-ambient concentrations of atmospheric carbon dioxide [CO2] (373 and 287 μmol mol−1, respectively) at three levels of supplemental nitrogen (N) (3, 6 and 14.5 m M ) from seeding until flowering [77 days after sowing (DAS)]. The primary objective of the study was to determine if N supply limited the potential photosynthetic and growth response of this species to the increase in atmospheric [CO2] which occurred during the 20th century (i.e. approximately 290 to 370 μmol mol−1 CO2). Leaf photosynthesis increased both as a function of growth [CO2] and N supply during the first 46 DAS. Although by 46 DAS photosynthetic acclimation was observed relative to a common measurement CO2 concentration, there was no interaction with N supply. Both [CO2] and N increased biomass, relative growth rates and leaf area whereas root : shoot ratio was increased by CO2 and decreased by increasing N; however, N supply did not effect the relative response to [CO2] for any measured vegetative parameter up to 77 DAS. Due to the relative stimulation of shoot biomass, total above-ground N increased at elevated [CO2] for all levels of supplemental N, but nitrogen use efficiency (NUE) did not differ as a function of [CO2]. Overall, these data suggest that any potential response to increased atmospheric [CO2] in recent decades for this noxious weedy species was probably not limited by nitrogen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号