首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

2.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

3.
Human HPTP beta, leukocyte common antigen (LCA), and leukocyte common antigen-related molecule (LAR) are transmembrane receptor-like proteins whose cytoplasmic regions contain either one (HPTP beta) or two (LCA and LAR) domains that are homologous to protein tyrosine phosphatases (PTPases). Whereas the membrane-proximal domain 1 has enzymatic activity, the membrane-distal domain 2 of both LCA and LAR has no detectable catalytic activity. The cytoplasmic regions of HPTP beta, LCA, and LAR were expressed in Escherichia coli and purified to greater than 90% purity. Modulatory effects of various low molecular weight compounds and homo- and copolymers of amino acids were examined. Several polypeptides that contain a high proportion of tyrosine were strongly inhibitory to these PTPases. To determine a possible role for the LAR domain 2, the properties of recombinant LAR PTPases containing both domains 1 and 2 (LAR-D1D2) or only domain 1 (LAR-D1) were compared. In nearly all aspects examined, LAR-D1 and LAR-D1D2 were indistinguishable. However, polycationic polypeptides strongly stimulated the PTPase activity of LAR-D1D2, but not LAR-D1, using the peptide substrate Raytide. Thus, basic polypeptides seem to indirectly alter the catalytic activity of domain 1 by interacting with domain 2. This result suggests that domain 2 has a regulatory function.  相似文献   

4.
The 53-kDa insulin receptor substrate protein (IRSp53) is part of a regulatory network that organises the actin cytoskeleton in response to stimulation by small GTPases, promoting formation of actin-rich cell protrusions such as filopodia and lamellipodia. It had been established earlier that IRSp53 is tyrosine phosphorylated in response to stimulation of the insulin and insulin-related growth factor receptors, but the consequences of tyrosine phosphorylation for IRSp53 function are unknown. Here, we have used a variety of IRSp53 truncation and point mutants to identify insulin-responsive tyrosine phosphorylation sites on IRSp53. We have found that the C-terminal half of IRSp53 (residues 251-521) undergoes tyrosine phosphorylation in response to insulin stimulation of the insulin beta receptor or epidermal growth factor stimulation via the epidermal growth factor receptor, and that the key residue for insulin receptor-mediated phosphorylation is tyrosine 310, located in a region between the N-terminal IRSp53/MIM homology domain (IMD, residue 1-250) and the central SH3 domain (residues 374-438) that is predicted to be natively unstructured. Mutation of tyrosine 310 to phenylalanine or glutamic acid abrogates the phosphorylation in response to insulin stimulation, but not in response to stimulation of the epidermal growth factor receptor. The N-terminal IMD, which mediates dimerisation of IRSp53, is required for efficient tyrosine phosphorylation downstream of either the insulin or epidermal growth factor receptor stimulation, yet does not appear to include a tyrosine-phosphorylated site itself. Thus, we have identified tyrosine 310 as a primary site of tyrosine phosphorylation in response to insulin signalling and we have shown that although IRSp53 is tyrosine phosphorylated in response to epidermal growth factor receptor signalling, tyrosine 310 is not crucial. Furthermore, the tyrosine phosphorylation status does not appear to affect the cell morphology and production of filopod-like structures upon expression of IRSp53.  相似文献   

5.
N X Krueger  M Streuli    H Saito 《The EMBO journal》1990,9(10):3241-3252
Protein tyrosine phosphatases (PTPases), together with protein tyrosine kinases, regulate the tyrosine phosphorylation that controls cell activities and proliferation. Previously, it has been recognized that both cytosolic PTPases and membrane associated, receptor-like PTPases exist. In order to examine the structural diversity of receptor-like PTPases, we isolated human cDNA clones that cross-hybridized to a Drosophila PTPase cDNA clone, DPTP12, under non-stringent hybridization conditions. The cDNA clones thus isolated included LCA and six other novel receptor-like PTPases, named HPTP alpha, beta, gamma, delta, epsilon, and zeta. The cytoplasmic regions of HPTP alpha and epsilon are highly homologous, and are composed of two tandemly duplicated PTPase-like domains. The extracellular regions of HPTP alpha and epsilon are, respectively, 123 amino acids and 27 amino acids, and do not have obvious similarity to any known protein. The cytoplasmic region of HPTP beta contains only one PTPase domain. The extracellular region of HPTP beta, which is 1599 amino acids, is composed of 16 fibronectin type-III repeats. HPTP delta is very similar to leukocyte common antigen related molecule (LAR), in both the extracellular and cytoplasmic regions. Partial sequences of HPTP gamma and zeta indicate that they are highly homologous and contain two PTPase-like domains. The PTPase-like domains of HPTP alpha, beta and delta expressed in Escherichia coli had tyrosine phosphatase activities.  相似文献   

6.
M Streuli  N X Krueger  T Thai  M Tang    H Saito 《The EMBO journal》1990,9(8):2399-2407
Protein tyrosine phosphorylation is regulated by both protein tyrosine kinases and protein tyrosine phosphatases (PTPases). Recently, the structures of a family of PTPases have been described. In order to study the structure-function relationships of receptor-linked PTPases, we analyzed the effects of deletion and point mutations within the cytoplasmic region of the receptor-linked PTPases, LCA and LAR. We show that the first of the two domains has enzyme activity by itself, and that one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity. The second PTPase like domains do not have detectable catalytic activity using a variety of substrates, but sequences within the second domains influence substrate specificity. The functional significance of a stretch of 10 highly conserved amino acid residues surrounding the critical cysteine residue located in the first domain of LAR was assessed. At most positions, any substitution severely reduced enzyme activity, while missense mutations at the other positions tested could be tolerated to varying degrees depending on the amino acid substitution. It is suggested that this stretch of amino acids may be part of the catalytic center of PTPases.  相似文献   

7.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

8.
Nine mutants of human casein kinase-2 beta subunit have been created and assayed for their ability to assemble with the catalytic alpha subunit to give, at a 1:1 molar ratio, a fully competent CK-2 holoenzyme as judged by the following criteria: 1) the generation of an active heterotetrameric form of CK-2 exhibiting the expected sedimentation coefficient and 2) the enhancement of catalytic activity of CK-2 alpha. Extended deletions of 71 and 44 residues from the C-terminal end, but not a 7 residue deletion (including the cdc2 phosphorylation site) prevent both reconstitution of the holoenzyme and, consequently, stimulation of activity. This indicates that residue(s) located in the 171-209 sequence is essential for reconstitution. Also a four residue's N-terminal deletion (removing the autophosphorylation site) and single to quintuple substitutions of alanine for the acidic residues clustered in the 55-70 sequence give rise to mutants that still assemble with the alpha subunit to give a tetrameric holoenzyme. However, in the case of the mutants A57,59, A63,64, A59-61,63,64 in vitro assembly with the CK-2 alpha subunit was not complete. There were also intermediate complexes, free alpha-subunit and beta-mutants found to sediment at various positions in the sucrose density gradient. In comparison to CK-2 beta +, mutants A57,59, A59-61 and A59-61,63,64 show an increased stimulation of the catalytic activity supporting the view that these residues play a crucial role in determining the basal activity of reconstituted CK-2 holoenzyme.  相似文献   

9.
Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIalpha and beta. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1-90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIalpha behaves as an integral membrane protein, in spite of a lack of a transmembrane domain. This integral association with membranes is due to palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domain. Although the CCPCC motif is conserved in PI4KIIbeta, only 50% of PI4KIIbeta is membrane-associated, and approximately half of this pool is only peripherally attached to the membranes. Growth factor stimulation or overexpression of a constitutively active Rac mutant induces the translocation of a portion of cytosolic PI4KIIbeta to plasma membrane ruffles and stimulates its activity. Here, we demonstrate that membrane-associated PI4KIIbeta undergoes two modifications, palmitoylation and phosphorylation. The cytosolic pool of PI4KIIbeta is not palmitoylated and has much lower lipid kinase activity than the membrane-associated kinase. Although only membrane-associated PI4KIIbeta is phosphorylated in the unique N-terminal region, this modification apparently does not influence its membrane binding or activity. A series of truncation mutants and alpha/beta chimaeras were generated to identify regions responsible for the isoform-specific behaviour of the kinases. Surprisingly, the C-terminal approx. 160 residues, and not the diverse N-terminal regions, contain the sites that are most important in determining the different solubilities, palmitoylation states and stimulus-dependent redistributions of PI4KIIalpha and beta.  相似文献   

10.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

11.
Protein-tyrosine phosphatases (PTPases) are becoming an important family of enzymes that might regulate key events in cell growth and transformation. While isolating a new member of this family via amplification of human lung cDNA by the polymerase chain reaction, we found a clone identical to but truncated at the 3'-end of the coding region of human PTPase beta (HPTP beta) mRNA. This difference in sequence is situated in the most conserved part of the catalytic domain of the enzyme. The expression level of the truncated form of HPTP beta mRNA in human lung was lower than its normal form.  相似文献   

12.
We describe the isolation, characterization, and sequence of cDNA clones encoding one subunit of the complex of membrane glycoproteins that forms part of the transmembrane connection between the extracellular matrix and the cytoskeleton. The cDNA sequence encodes a polypeptide of 89 kd that has features strongly suggesting the presence of a large N-terminal extracellular domain, a single transmembrane segment, and a small C-terminal cytoplasmic domain. The extracellular domain contains a threefold repeat of a novel 40 residue cysteine-rich segment, and the cytoplasmic domain contains a tyrosine residue that is a potential site for phosphorylation by tyrosine kinases. We propose the name integrin for this protein complex to denote its role as an integral membrane complex involved in the transmembrane association between the extracellular matrix and the cytoskeleton.  相似文献   

13.
The major intracellular protein tyrosine phosphatase (PTP1B) is a 50kDa protein, localized to the endoplasmic reticulum. This PTP is recovered in the particulate fraction of mamalian cells and can be solubilized as a complex of 150 kDa by extraction with non-ionic detergents. Previous work from this laboratory implicated phosphorylation of serine/threonine residues in the regulation of this PTP. Activity was several-fold higher in cells treated with activators of cAMP-dependent or Ca2+/phospholipid-dependent protein kinases or inhibitors of protein phosphatase 2A. Here we show that these treatments result in more than an 8-fold increase in the phosphorylation of the 50kDa PTP catalytic subunit within the 150kDa form of the phosphatase in HeLa cells. The phosphorylation occurred exclusively on serine residues, and the same tryptic and cyanogen bromide,32P-phosphopeptides were recovered in the PTP from control and stimulated cells. Either multiple kinases phosphorylate a common site in the PTP1B, or a single kinase is activated downstream of cAMP- and Ca2+/phospholipid-dependent kinases. The results indicate that phosphorylation of a serine residue in the segment 283–364, probably serine 352 in the sequence Lys-Gly-Ser-Pro-Leu, occurs in response to cell stimulation. Phosphorylation in this region of PTP1B, between the N-terminal catalytic domain and the C-terminal membrane localization segment, is proposed to regulate phosphatase activity.  相似文献   

14.
Two isoforms of protein phosphatase 1 may be produced from the same gene   总被引:8,自引:0,他引:8  
P T Cohen 《FEBS letters》1988,232(1):17-23
  相似文献   

15.
Inhibitor kappaB kinase beta binding by inhibitor kappaB kinase gamma   总被引:1,自引:0,他引:1  
Drew D  Shimada E  Huynh K  Bergqvist S  Talwar R  Karin M  Ghosh G 《Biochemistry》2007,46(43):12482-12490
  相似文献   

16.
Members of the Eph family of receptor tyrosine kinases exhibit a striking degree of amino acid homology, particularly notable in the kinase and membrane-proximal regions. A mutagenesis approach was taken to address the functions of specific conserved tyrosine residues within these catalytic and juxtamembrane domains. Ligand stimulation of wild-type EphB2 in neuronal NG108-15 cells resulted in an upregulation of catalytic activity and an increase in cellular tyrosine phosphorylation, accompanied by a retraction of neuritic processes. Tyrosine-to-phenylalanine substitutions within the conserved juxtamembrane motif abolished these responses. The mechanistic basis for these observations was examined using the highly related EphA4 receptor in a continuous coupled kinase assay. Tandem mass spectrometry experiments confirmed autophosphorylation of the two juxtamembrane tyrosine residues and also identified a tyrosine within the kinase domain activation segment as a phosphorylation site. Kinetic analysis revealed a decreased affinity for peptide substrate upon substitution of activation segment or juxtamembrane tyrosines. Together, our data suggest that the catalytic and therefore biological activities of Eph receptors are controlled by a two-component inhibitory mechanism, which is released by phosphorylation of the juxtamembrane and activation segment tyrosine residues.  相似文献   

17.
Protein tyrosine phosphatases PTP-SL and PTPBR7 are isoforms belonging to cytosolic membrane-associated and to receptor-like PTPs (RPTPs), respectively. They represent a new family of PTPs with a major role in activation and translocation of MAP kinases. Specifically, the complex formation between PTP-SL and ERK2 involves an unusual interaction leading to the phosphorylation of PTP-SL by ERK2 at Thr253 and the inactivating dephosphorylation of ERK2 by PTP-SL. This interaction is strictly dependent upon a kinase interaction motif (KIM) (residues 224-239) situated at the N terminus of the PTP-SL catalytic domain. We report the first crystal structure of the catalytic domain for a member of this family (PTP-SL, residues 254-549, identical with residues 361-656 of PTPBR7), providing an example of an RPTP with single cytoplasmic domain, which is monomeric, having an unhindered catalytic site. In addition to the characteristic PTP-core structure, PTP-SL has an N-terminal helix, possibly orienting the KIM motif upon interaction with the target ERK2. An unusual residue in the catalytically important WPD loop promotes formation of a hydrophobically and electrostatically stabilised clamp. This could induce increased rigidity to the WPD loop and therefore reduced catalytic activity, in agreement with our kinetic measurements. A docking model based on the PTP-SL structure suggests that, in the complex with ERK2, the phosphorylation of PTP-SL should be accomplished first. The subsequent dephosphorylation of ERK2 seems to be possible only if a conformational rearrangement of the two interacting partners takes place.  相似文献   

18.
The 3'-terminal region of starfish Asterina pectinifera cdc25 cDNA encoding the C-terminal catalytic domain was overexpressed in Escherichia coli. The C-terminal domain consisted of 226 amino acid residues containing the signature motif HCxxxxxR, a motif highly conserved among protein tyrosine and dual-specificity phosphatases, and showed phosphatase activity toward p-nitrophenyl phosphate. The enzyme activity was strongly inhibited by SH inhibitors. Mutational studies indicated that the cysteine and arginine residues in the conserved motif are essential for activity, but the histidine residue is not. These results suggest that the enzyme catalyzes the reaction through a two-step mechanism involving a phosphocysteine intermediate like in the cases of other protein tyrosine and dual-specificity phosphatases. The C-terminal domain of Cdc25 activated the histone H1 kinase activity of the purified, inactive form of Cdc2.cyclin B complex (preMPF) from extracts of immature starfish oocytes. Synthetic diphosphorylated di- to nonadecapeptides mimicking amino acid sequences around the dephosphorylation site of Cdc2 still retained substrate activity. Phosphotyrosine and phosphothreonine underwent dephosphorylation in this order. This is the reverse order to that reported for the in vivo and in vitro dephosphorylation of preMPF. Monophosphopeptides having the same sequence served as much poorer substrates. As judged from the results with synthetic phosphopeptides, the presence of two phosphorylated residues was important for specific recognition of substrates by the Cdc25 phosphatase.  相似文献   

19.
Gaillard C  Bedouelle H 《Biochemistry》2001,40(24):7192-7199
Tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus comprises three sequential domains: an N-terminal catalytic domain, an alpha-helical domain with unknown function, and a C-terminal tRNA binding domain (residues 320-419). The properties of the polypeptide segment that links the alpha-helical and C-terminal domains, were analyzed by measuring the effects of sequence changes on the aminoacylation of tRNA(Tyr) with tyrosine. Mutations F323A (Phe323 into Ala), S324A, and G325A showed that the side chain of Phe323 was essential but not those of Ser324 and Gly325. Insertions of Gly residues between Leu322 and Phe323 and the point mutation L322P showed that the position and precise orientation of Phe323 relative to the alpha-helical domain were important. Insertions of Gly residues between Gly325 and Asp326 and deletion of residues 330-339 showed that the length and flexibility of the sequence downstream from Gly325 were unimportant but that this sequence could not be deleted. Mutations F323A, -L, -Y, and -W showed that the essential property of Phe323 was its aromaticity. The Phe323 side chain contributed to the stability of the initial complex between TyrRS and tRNA(Tyr) for 2.0 +/- 0.2 kcal x mol(-1) and to the stability of their transition state complex for 4.2 +/- 0.1 kcal x mol(-1), even though it is located far from the catalytic site. The results indicate that the disorder of the C-terminal domain in the crystals of TyrRS is due to the flexibility of the peptide that links it to the helical domain. They identified Phe323 as an essential residue for the recognition of tRNA(Tyr).  相似文献   

20.
The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays. The PKCalpha C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCalpha immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCalpha immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCalpha is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCalpha function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号