首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amoebophrya is a marine parasite recently found to infect and kill bloom-forming dinoflagellates in the California Current System (CCS). However, it is unknown whether parasitism by Amoebophrya can control dinoflagellate blooms in major eastern boundary upwelling systems, such as the CCS. We quantified the abundance of a common bloom-forming species Akashiwo sanguinea and prevalence of its parasite (i.e., % infected cells) in surface water samples collected weekly from August 2005 to December 2008 at the Santa Cruz Wharf (SCW), Monterey Bay, CA. Additionally, we measured physical and chemical properties at the SCW and examined regional patterns of wind forcing and sea surface temperature. Relative abundance of the net phytoplankton species was also analyzed to discern whether or not parasitism influences net phytoplankton community composition. Epidemic infection outbreaks (>20% parasite prevalence in the host species) may have contributed to the end or prevented the occurrence of A. sanguinea blooms, whereas low parasite prevalence was associated with short-term (≤2 weeks) A. sanguinea blooms. The complete absence of parasitism in 2007 was associated with an extreme A. sanguinea bloom. Anomalously strong upwelling conditions were detected in 2007, suggesting that A. sanguinea was able to outgrow Amoebophrya and ‘escape’ parasitism. We conclude that parasitism can strongly influence dinoflagellate bloom dynamics in upwelling systems. Moreover, Amoebophrya may indirectly influence net phytoplankton species composition, as species that dominated the net phytoplankton and developed algal blooms never appeared to be infected.  相似文献   

2.
A massive fish kill and water discoloration were reported off the western coast of Puerto Princesa, Palawan, Philippines in March 2005. Phytoplankton analysis revealed a near monospecific bloom of the dinoflagellate, Cochlodinium polykrikoides, with cell concentrations ranging from 2.5 × 105 to 3.2 × 106 cells per liter. Ground truth data were supplemented by processed satellite images from MODIS Aqua Level 2 data (1 km resolution) from January to April 2005, which revealed high surface chlorophyll-a levels (up to 50 mg/m3) offshore of west and southwest Palawan as early as February 2005. The bloom extended 310 km in length and 80 km in width at its peak in March off the central coast (Puerto Princesa). By April, the bloom declined in intensity, but was still apparent along the northern coast (El Nido). Fluctuations in chlorophyll levels off the western coast of Sabah, Malaysia and Brunei during this time period suggested that the bloom was not limited to the coast of Palawan. Satellite imagery from Sabah in late January revealed a plume of chl-a that is believed to be the source of the C. polykrikoides bloom in Palawan. This plume drifted offshore, advected northward via the basin-wide counterclockwise gyre, and reached nutrient-rich, upwelled waters near Palawan (due to a positive wind stress curl) where the dinoflagellate bloomed and persisted for 2 months from March to April 2005.  相似文献   

3.
Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguineaAmoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguineaEctocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host‐specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.  相似文献   

4.
Absolute abundance of rotifers was assessed from 5 to 80 km across the continental shelf off of the southern Oregon coast (U.S.A.) in the northeast Pacific Ocean. A total of 97 vertically stratified water samples were collected at 49 stations from two depths, 3 and 30 m. Coastal upwelling conditions were indicated, with decreased temperature, increased salinity and higher chlorophyll-a concentrations closer to shore. Two rotifer genera, Synchaeta and Trichocercaoccurred within 16 km of shore with densities increasing closer to shore. Synchaeta reached densities of 64 inds l–1 while Trichocerca was sparse (<1 inds. l–1). Rotifers were most abundant at 3 m and the densest aggregations appear to be associated with estuary outlets, suggesting that estuaries may be important in exporting rotifers to nearshore coastal waters.  相似文献   

5.
The spatial-temporal distribution of a dinoflagellate bloom dominated or co-dominated by Prorocentrum minimum was examined during autumn through early spring in a warm temperate, eutrophic estuary. The developing bloom was first detected from a web-based alert provided by a network of real-time remote monitoring (RTRM) platforms indicating elevated dissolved oxygen and pH levels in upper reaches of the estuary. RTRM data were used to augment shipboard sampling, allowing for an in-depth characterization of bloom initiation, development, movement, and dissipation. Prolonged drought conditions leading to elevated salinities, and relatively high nutrient concentrations from upstream inputs and other sources, likely pre-disposed the upper estuary for bloom development. Over a 7-month period (October 2001–April 2002), the bloom moved toward the northern shore of the mesohaline estuary, intensified under favorable conditions, and finally dissipated after a major storm. Bloom location and transport were influenced by prevailing wind structure and periods of elevated rainfall. Chlorophyll a within bloom areas averaged 106 ± 13 μg L−1 (mean ± 1 S.E.; maximum, 803 μg L−1), in comparison to 20 ± 1 μg L−1 outside the bloom. There were significant positive relationships between dinoflagellate abundance and TN and TP. Ammonium, NO3, and SRP concentrations did not decrease within the main bloom, suggesting that upstream inputs and other sources provided nutrient-replete conditions. In addition, PAM fluorometric measurements (09:00–13:00 h) of maximal PSII quantum yield (Fv/Fm) were consistently 0.6–0.8 within the bloom until late March, providing little evidence of photo-physiological stress as would have been expected under nutrient-limiting conditions. Nitrogen uptake kinetics were estimated for P. minimum during the period when that species was dominant (October–December 2001), based on literature values for N uptake by an earlier P. minimum bloom (winter 1999) in the Neuse Estuary. The analysis suggests that NH4+ was the major N species that supported the bloom. Considering the chlorophyll a concentrations during October and December and the estimated N uptake rates, phytoplankton biomass was estimated to have doubled once per day. Bloom displacement (January–February) coincided with higher diversity of heterotrophic dinoflagellate species as P. minimum abundance decreased. This research shows the value of RTRM in bloom detection and tracking, and advances understanding of dinoflagellate bloom dynamics in eutrophic estuaries.  相似文献   

6.
Raine  R.  O'Boyle  S.  O'Higgins  T.  White  M.  Patching  J.  Cahill  Bronwyn  McMahon  T. 《Hydrobiologia》2001,465(1-3):187-193
An extensive surface bloom of the dinoflagellate Karenia mikimotoi occurred off southwestern Ireland during August, 1998. The bloom was evident both from remotely sensed satellite ocean colour data and as visibly discoloured water, from the mouth of Bantry Bay around towards Cork, extending some 60 km offshore. The timing of the bloom co-incided with a field survey in the area. This paper compares the surface distributions of chlorophyll and K. mikimotoi concentrations with satellite ocean colour and thermal infra-red sea surface temperature images, from which may be derived the origins of the bloom. It would appear that weak coastal upwelling transported a thermocline population of K. mikimotoi up to the surface in the region of the Fastnet Rock, where it was wind-dispersed eastwards across the northern Celtic Sea.  相似文献   

7.
The endoparasitic dinoflagellate Amoebophrya infects a number of free‐living marine dinoflagellates, including harmful algal bloom species. The parasitoid eventually kills its host and has been proposed to be a significant loss factor for dinoflagellate blooms in restricted coastal waters. For several decades, the difficulties of culturing host‐parasitoid systems have been a great obstacle for further research on the biology of Amoebophrya. Here, we established an Akashiwo sanguineaAmoebophrya sp. coculture from Chinese coastal waters and studied the parasitoid's generation time, dinospore survival and infectivity, as well as its host specificity. The lifespan of Amoebophrya sp. ex. A. sanguinea was approximately 58 h. The infective dinospores can survive up to 78 h in ambient waters but gradually lose their infectivity. The parasitoid was unable to infect other dinoflagellate species, its infection rate reached as high as 91% when the ratio of dinospores to host cells was 20:1. The high infectivity of dinospores suggests that the Amoebophrya strain was capable of removing a considerable fraction of host biomass within a short period, but that it is probably unable to maintain high infection levels under nonbloom conditions of its host, due to limited survival and time constraints in encountering host cells.  相似文献   

8.
Toxic algal blooms are common world-wide and pose a serious problem to the aquaculture and fishing industries. Dinoflagellate species such as Karenia brevis, Karenia mikimotoi, Heterosigma akashiwo and Chatonella cf. antiqua are recognised toxic species implicated in various faunal mortalities. Toxic blooms of Karenia cristata were observed on the south coast of South Africa for the first time in 1988 and were responsible for mortalities of wild and farmed abalone. K. cristata and various other dinoflagellate species common along the South African coast, as well as K. mikimotoi (Isolation site: Norway, Univ. of Copenhagen) and K. brevis (Isolation site: Florida, BIGELOW), were tested for toxicity by means of a bioassay involving Artemia larvae as well as abalone larvae and spat. K. cristata, like K. brevis, contains an aerosol toxin; however, the toxin present in K. cristata has not yet been isolated and remains unknown. K. brevis was, therefore, used to determine which developmental phase of the bloom would affect abalone farms most, and whether ozone could be used as an effective mitigating agent. Of the 17 dinoflagellate species tested, K. cristata, Akashiwo sanguinea, K. mikimotoi and K. brevis pose the greatest threat to the abalone mariculture industry. K. brevis was most toxic during its exponential and stationary phases. Results suggest that ozone is an effective mitigation agent but its economic viability for use on abalone farms must still be investigated.  相似文献   

9.
A fuzzy logic model to describe the seasonal evolution of Nodularia spumigena blooms in the Gulf of Finland was built and calibrated on the basis of monitoring data. The model includes three phosphate sources: excess phosphate after the annual spring bloom and parameterised phosphate transport to the upper mixed layer by turbulent mixing and upwelling events. Surface layer temperature and wind mixing form the physical conditions controlling the growth of N. spumigena. Model simulations revealed that phosphate input caused by turbulent mixing and upwelling have to be taken into account to achieve the best fit with observed data. Testing the fuzzy model for early prediction of maximum N. spumigena biomass about a month before the usual occurrence of blooms, gave good results. The potential use of the model for prediction of bloom risk at a certain location along the Estonian or Finnish coast was tested. The bloom transport velocities used in the fuzzy model were pre-calculated by a 3D numerical circulation model for different wind regimes.  相似文献   

10.
Investigation of annual changes in phytoplankton community structure in a small artificial eutrophic pond was carried out from May 2002 to April 2003. A heavy bloom of Aphanizomenon flos-aquae var. klebahnii Elenk. (Cyanobacteria) persisted in most of the water column from June to the end of October. In November, the A. flos-aquae bloom suddenly crashed and green algae were predominant until the end of spring. Weekly monitoring suggested strong involvement of the changes in abiotic factors in the cyanobacterial bloom degradation. To clarify the effects of pH, water temperature, and day length on the growth of A. flos-aquae, laboratory batch experiments were conducted. The results showed that A. flos-aquae could not grow below pH 7.1 and 11°C, and the growth tended to be suppressed under a 10L:14D photoperiod. pH, water temperature, and day length are vital factors in the growth of A. flos-aquae and, additionally, grazing by cyclopoid copepods also seemed important in bloom collapse.  相似文献   

11.
In the framework of the EU Project STRATEGY, a short-term study was carried out in the Marinello ecosystem, a small brackish area located on the Tyrrhenian coast of Sicily (Italy). The investigation was aimed at understanding the dynamics of phytoplankton toxic blooms in relation to other planktonic species and environmental conditions. The study started on 10 March 2003, in coincidence with the first detection of Alexandrium minutum, a dinoflagellate known as a producer of Paralyzing Shellfish Toxins (PST) and lasted until 4 June 2003, when the bloom collapsed. The specific identity of A. minutum was confirmed on field mixed samples, through the use of species-specific PCR-primers targeting the 5.8S rDNA-ITS regions. Water samples and phytoplankton net hauls were taken approximately at 10 days intervals in the Verde Pond, one of the five basins of the Marinello ecosystem, in order to evaluate the incidence of toxic and non-toxic dinoflagellate species over the whole planktonic community. The evolution of the main environmental and trophic parameters (temperature, salinity, dissolved oxygen, POC, C/N, DIN, PO4–P) was simultaneously investigated. Alexandrium blooms were mostly characterized by A. minutum (max. 6 × 105 cells l−1 on April 11) and Alexandrium tamarense as an associated species (max. 2.5 × 104 cells l−1 on March 25). During the bloom, dinoflagellates or small flagellates dominated over the other taxa, with a minimum incidence of diatoms. The load of dissolved inorganic nitrogen was maximum in the pre-bloom phase (29 μM on March 19), after which it decreased sharply. An oxygen supersaturation event was registered in coincidence with the A. minutum bloom. The amounts of POC ranged between 266 and 658 μg l−1 showing a discontinuous temporal trend. A recent introduction of A. minutum into the Verde Pond is suggested on the basis of the absence of this species in past years.  相似文献   

12.
María Trigueros  Juan  Orive  Emma 《Hydrobiologia》2001,444(1-3):119-133
Seasonal changes in the diatom and dinoflagellate assemblages were examined in the neritic zone of the Urdaibai estuary (north Spain) with regard to some major physical and chemical variables during an annual cycle. A total of 81 diatoms and 38 dinoflagellates were identified and quantified during the study period. Both groups displayed a distinctive pattern of seasonal succession. The seasonal distribution of the Shannon index showed a trend of increasing values from the upper estuary to the lower neritic segment. The diatom diversity maxima were observed in February, April and September, and dinoflagellate maxima in April–May, July and October. Diatoms dominated the assemblages, reaching 1×106 cells l–1 from April to September. A shift from large diatoms and dinoflagellates to small bloom-forming taxa was observed during winter–early spring. A spring diatom bloom composed of Rhizosolenia spp. was observed in April, while small chain-forming taxa (chiefly Chaetoceros spp.) dominated from June to September. Cell maxima for both groups in late summer were produced by the diatoms Chaetoceros salsugineum and Skeletonema costatum, and by the dinoflagellates Heterocapsa pygmaea and Peridinium quinquecorne. Silicate availability by river supply and strong tidal-mixing of the water column seem to determine the year-round dominance of diatoms over dinoflagellates.  相似文献   

13.
The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division per day at 31 °C. Salinities above 15 psu had a lesser effect on growth rate, as might be expected for an estuarine species. Growth rates of cultures exposed to natural light and temperature fluctuations were comparable to laboratory cultures. The minimum N cell quota suggested that high N flux would be required to support bloom development. A literature survey of documented A. monilatum blooms indicated that within US waters, blooms occur in July–September in nearshore or estuarine regions of the Gulf of Mexico and the Florida Atlantic coast. Temperature and salinity measured during blooms correspond to the optimal growth conditions of the laboratory cultures. Nevertheless, the occurrence of A. monilatum blooms is sporadic compared to the occurrence of seemingly optimal growth conditions. Laboratory growth experiments predict when blooms of this species are unlikely due to low growth rates, but so far cannot predict individual blooms.  相似文献   

14.
The toxins associated with paralytic shellfish poisoning (PSP) are potent neurotoxins produced by natural populations of the marine dinoflagellate Alexandrium tamarense. In early June 2000, a massive bloom (>7×105 cells l−1) of this dinoflagellate coincided with an unusually high mortality of farmed salmon in sea cages in southeastern Nova Scotia. Conditions in the water column in the harbour were characterised by the establishment of a sharp pycnocline after salinity stratification due to abundant freshwater runoff. In situ fluorescence revealed a high sub-surface (2–4 m depth) chlorophyll peak related to the plankton bloom. The intense bloom was virtually monospecific and toxicity was clearly related to the concentration of Alexandrium cells in plankton size fractions. Cultured clonal isolates of A. tamarense from the aquaculture sites were very toxic on a per cell basis and yielded a diversity of PSP toxin profiles, some of which were similar to those from plankton concentrates from the natural bloom population. The toxin profile of plankton concentrates from the 21–56 μm size fraction was complex, dominated by the N-sulfocarbamoyl derivative C2, with levels of other PSP toxins GTX4, NEO, GTX5 (=B1), GTX3, GTX1, STX, C1, and GTX2, in decreasing order of relative abundance. Although no PSP toxin was found systemically in the fish tissues (liver, digestive tract) from this salmon kill event, the detection of Alexandrium cells and low levels of PSP toxins in salmon gills provide evidence that the enhanced mortalities were caused by direct exposure to toxic Alexandrium cells and/or to soluble toxins released during the bloom.  相似文献   

15.
A dinoflagellate bloom was found associated with a fish kill event in a South Carolina brackish water retention pond. A multi-analytical approach was used to confirm the identity of the bloom dinoflagellate and evaluate its potential toxicity. Karlodinium micrum was confirmed through light microscopy, pigment profile comparisons, species-specific PCR, and gene sequence data. Necropsy findings on several fish were suggestive of an acute kill event. Toxicity of filtrate from bloom samples was tested by a hemolytic assay using rainbow trout (Oncorhynchus mykis) erythrocytes and an ichthyotoxicity assay using larval zebrafish (Danio rerio). Hemolytic activity was measurably high (>80% hemolysis) in both whole filtrate and fractionated filtrate (from the 80% MeOH C18 column elution). This fraction also demonstrated high ichthyotoxic activity as exposed fish experienced rapid death. These results implicate toxic K. micrum as a causative factor in fish death in a non-aquaculture brackish pond associated with a housing development, and extend recent findings linking this species to fish kills in aquaculture ponds.  相似文献   

16.
The brevetoxin producing dinoflagellate, Karenia brevis, is the target of several monitoring and research programs in the Gulf of Mexico, where it forms extensive and frequently long-lived annual blooms that can cause human intoxication and fish kills, as well as severe economic losses to coastal communities. Rapid, reliable methods for the detection and enumeration of K. brevis cells, as well as their discrimination from morphologically similar species, are valuable tools for managers and scientists alike. Our aim was to produce a species-specific molecular probe that would serve as a tool to facilitate the efficient and reliable detection of K. brevis in the Gulf of Mexico. We sequenced a fragment of the large-subunit ribosomal RNA gene (LSU rDNA) from five K. brevis cultures isolated from the Texas Gulf coast, the Florida Gulf coast, and the Atlantic coast of Florida, and detected no differences among these isolates. A consensus sequence was thus compiled and compared to a previously published sequence from Karenia mikimotoi, the closest known phylogenetic relative to K. brevis, for the purpose of identifying unique K. brevis signature sequences. Fluorescently-labeled (FITC) oligonucleotide probes targeting these regions of the K. brevis LSU rRNA were designed to include at least two base pair differences, as compared to K. mikimotoi. Among seven probes designed, one uniquely identified all K. brevis isolates to the exclusion of all other species tested (Kbprobe-7), including a Gulf of Mexico K. mikimotoi isolate (Sarasota, FL) and several additional Gymnodinium species, as well as other dinoflagellate, diatom, and raphidophyte taxa. Importantly, K. brevis cells in samples taken during a 2001 bloom, fixed with a mixture of modified saline ethanol and 10% formalin, and stored at 4 °C for 7 months were successfully labeled with Kbprobe-7. In addition, preliminary analysis of labeled cells by flow cytometry revealed that K. brevis could be distinguished from K. mikimotoi in solution, suggesting other potential applications of this probe.  相似文献   

17.
Many shallow lakes in north temperate zones experience reduced dissolved oxygen concentration under ice. However, some shallow lakes display supersaturated dissolved oxygen concentrations (>20 mg·L ? 1) in late winter under conditions of maximum ice thickness. During the winters of 1996, 1997, and 1999, we collected phytoplankton samples from Arrowwood Lake near Pingree, North Dakota to determine whether a specific alga was involved in dissolved oxygen supersaturation in this lake. Although dissolved oxygen supersaturation was not observed during this period, we did observe an increase in dissolved oxygen concentration that was associated with a phytoplankton bloom during late February and early March in both 1996 and 1997. In 1996, the bloom was composed of the dinoflagellate, Peridinium aciculiferum (Lemm.) Lemm. and several species of cryptomonads. A similar bloom of P. aciculiferum was followed by a bloom of several species of euglenoids in 1997. In contrast, P. aciculiferum was only a minor component of the winter phytoplankton, dissolved oxygen concentrations remained low, and no bloom event was observed in 1999. Statistical analyses indicated a significant relationship (rs = 0.57, P = 0.019) between dissolved oxygen levels and the density of the dinoflagellate, P. aciculiferum, but no significant relationship between dissolved oxygen levels and densities of other phytoplankton. These results suggest that the elevated levels of dissolved oxygen are associated with the dinoflagellate, P. aciculiferum. This bloom was most likely the result of an excystment event rather than a general growth response.  相似文献   

18.
Phytoplankton blooms are a worldwide ecological problem and one of the major algae that cause phytoplankton blooms is Akashiwo sanguinea. Though much research has addressed the abiotic causes (e.g. growth condition) of A. sanguinea blooms, few studies have examined the dynamics of microbial communities associated with these blooms. In this study, polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA genes was used to document changes in the phylogenetic diversity of microbial communities associated with an A. sanguinea bloom that occurred in the Xiamen sea in May 2010. Surface sea water was sampled once a day within five consecutive days at four sites, and the microbial community composition was determined using DGGE. Sea water concentrations of chlorophyll a, nitrate and phosphate were also measured. The results indicated that the A. sanguinea bloom was probably stimulated by low salinity (26–30‰) and ended probably because inorganic nutrients were consumed and resulted in a N/P ratio unfavorable for this alga. Gammaproteobacteria populations increased significantly during bloom declines and then decreased post-bloom. Divergences in the microbial community composition during different bloom periods were the result of changes in Candidatus, Pelagibacter, Alteromonas, Rhodobacteraceae, Vibrio and Pseudoalteromonas populations. Sediminimonas qiaohouensis was the first bacterium shown to be significantly negatively correlated with A. sanguinea concentration. This study indicated that bacteria may play an important role in A. sanguinea–bloom regulation and provides a deeper insight into bacterial community succession during and after an A. sanguinea–bloom.  相似文献   

19.
The occurrence and morphology of the potentially toxic dinoflagellate species Alexandrium minutum found for the first time in Jamaica, were examined and described by light and scanning electron microscopy. Classical morphological examinations of whole cells, the thecal plate pattern of intact cells and more importantly the structure of individual thecal plates of squashed cells, were conducted in an attempt to positively identify the species. Characteristics such as a tear-drop shaped apical pore plate with a comma-shaped apical pore and no anterior attachment pore; a narrow sixth precingular plate; a narrow anterior sulcal plate longer than or approximately as long as it is wide; and a posterior sulcal plate wider than long, confirmed the Jamaican species as A. minutum. This dinoflagellate which produces potent neurotoxins responsible for paralytic shellfish poisoning (PSP) in humans in many parts of the World, as well as mass mortality of various marine flora and fauna, was identified in water samples collected during an extensive bloom of the species in the brackish to saline water body of Hunts Bay, an estuarine arm of Kingston Harbour, Jamaica in August 1994. The highest cell concentration was 4.6 × 105 cells l−1, a concentration which far exceeds acceptable concentrations (<103 cells l−1) of PSP-toxin producing A. minutum in several countries including: Spain and Denmark. No PSP human symptoms were reported during the bloom; however it was accompanied by a large kill of small pelagic fish extending across a third of the bay. Since then, smaller blooms of A. minutum have occurred with the most recent in February and April 2004. Hunts Bay is an important fishing, shrimping and to some extent oyster/mussel collection area and provides an important source of livelihood and food for many fishermen in nearby fishing communities as well as an important source of food for members of other communities. Although there are no known records of human illness due to PSP in Jamaica, the occurrence and blooming in Jamaican waters of this potentially toxic dinoflagellate, is great cause for concern.  相似文献   

20.
In August and September 2001, Kuwait Bay, a semi-enclosed embayment of the Arabian Gulf, experienced a massive fish kill involving over >2500 metric tons of wild mullet (Liza klunzingeri), due to the bacterium Streptococcus agalactiae. In the Bay, this event was preceded by a small fish kill (100–1000 dead fish per day) of gilthead sea bream (Sparus auratus) in aquaculture net pens associated with a bloom of the dinoflagellate Ceratium furca. Sea bream were found to be culture positive for S. agalactiae, but did not show any visible signs of disease. Unusually warm temperatures (up to 35 °C) and calm conditions prevailed during this period. As the wild fish kill progressed, various harmful algae were observed, including Gymnodinium catenatum, Gyrodinium impudicum, and Pyrodinium bahamense var. compressum. Cell numbers of G. catenatum and G. impudicum exceeded 106 l−1 in some locations. All fish tested below the limits of detection for paralytic shellfish poisoning (PSP) and brevetoxins. Clams (Circe callipyga) were positive for PSP but at levels below regulatory limits. Nutrient concentrations, both inorganic and organic, were highly variable with time and from site to site, reflecting inputs from sewage outfalls, the aquaculture operations, a high biomass of decomposing fish, and other sources. It is hypothesized that many factors contributed to the initial outbreak of the bacterial disease, including unusual warm and calm conditions. The same factors, as well as enriched nutrient conditions, also apparently were conducive to the subsequent HAB outbreaks. The detection of PSP, while below regulatory limits, warrants further monitoring to protect human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号