首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The protein kinaseC (PKC) family represents an important group of enzymes whoseactivation is associated with their translocation from the cytosol todifferent cellular membranes. In this study, the spatial distributionof PKC-, - and - in rat liver epithelial (WB) cells has beenexamined by Western blot analysis after subcellular fractionation.Cytosolic, membrane, nuclear, and cytoskeletal fractions were obtainedfrom cells stimulated with phorbol 12-myristate 13-acetate (PMA),angiotensin II (ANG II), or epidermal growth factor (EGF). PMA causedmost of the PKC-, - and - initially present in the cytosol tobe transported to the membrane and nuclear fractions. In contrast, bothANG II and EGF induced only a minor translocation of PKC- to themembrane fraction but caused a statistically significantmembrane-directed movement of PKC- and -. Translocation ofPKC- and - to the nucleus induced by ANG II and EGF was transient and quantitatively smaller than that induced by PMA. PKC- and -were present in the cytoskeleton of resting cells, but although PMA,ANG II, and EGF caused some changes in their content, these werevariable, suggesting that the cytoskeleton fraction was heterogeneous. PKC depletion inhibited ANG II-induced mitogenesis and the sustained activation of Raf-1 and extracellular regulated protein kinase (ERK).However, although PKC depletion inhibited EGF-induced mitogenesis, themaximum EGF-induced activation of the ERK pathway was only slightlyretarded. We hypothesize that PKC- and - are involved inmitogenesis via both ERK-dependent and ERK-independent mechanisms. These results support the notion that specific PKC isozymes exert spatially defined effects by virtue of their directed translocation todistinct intracellular sites.

  相似文献   

2.
Activation of airwayepithelial Na-K-2Cl cotransporter (NKCC)1 requires increased activityof protein kinase C (PKC)-, which localizes predominantly to theactin cytoskeleton. Prompted by reports of a role for actin in NKCC1function, we studied a signaling mechanism linking NKCC1 and PKC.Stabilization of actin polymerization with jasplakinolide increasedactivity of NKCC1, whereas inhibition of actin polymerization withlatrunculin B prevented hormonal activation of NKCC1. Protein-proteininteractions among NKCC1, actin, and PKC- were verified by Westernblot analysis of immunoprecipitated proteins. PKC- was detected inimmunoprecipitates of NKCC1 and vice versa. Actin was also detected inimmunoprecipitates of NKCC1 and PKC-. Pulldown of endogenous actinrevealed the presence of NKCC1 and PKC-. Binding of recombinantPKC- to NKCC1 was not detected in overlay assays. Rather, activatedPKC- bound to actin, and this interaction was prevented by a peptideencoding C2, a C2-like domain based on the amino acid sequence ofPKC-. C2 also blocked stimulation of NKCC1 function bymethoxamine. Immunofluorescence and confocal microscopy revealedPKC- in the cytosol and cell periphery. Merged images of cellsstained for actin and PKC- indicated colocalization of PKC- andactin at the cell periphery. The results indicate that actin iscritical for the activation of NKCC1 through a direct interaction with PKC-.

  相似文献   

3.
Protein kinase C(PKC) regulates cystic fibrosis transmembrane conductance regulator(CFTR) channel activity but the PKC signaling mechanism is not yetknown. The goal of these studies was to identify PKC isotype(s)required for control of CFTR function. CFTR activity was measured as36Cl efflux in a Chinese hamsterovary cell line stably expressing wild-type CFTR (CHO-wtCFTR) and in aCalu-3 cell line. Chelerythrine, a PKC inhibitor, delayed increasedCFTR activity induced with phorbol 12-myristate 13-acetate or with thecAMP-generating agents ()-epinephrine or forskolin plus8-(4-chlorophenylthio)adenosine 3',5'- cyclicmonophosphate. Immunoblot analysis of Calu-3 cells revealed thatPKC-, -II, -, -, and- were expressed in confluent cell cultures. Pretreatment of cellmonolayers with Lipofectin plus antisense oligonucleotide to PKC-for 48 h prevented stimulation of CFTR with ()-epinephrine,reduced PKC- activity in unstimulated cells by 52.1%, and decreasedPKC- mass by 76.1% but did not affect hormone-activated proteinkinase A activity. Sense oligonucleotide to PKC- and antisenseoligonucleotide to PKC- and - did not alter()-epinephrine-stimulated CFTR activity. These results demonstrate the selective regulation of CFTR function by constitutively active PKC-.

  相似文献   

4.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

5.
A role for protein kinase C (PKC)- and -isotypes in 1-adrenergicregulation of human tracheal epithelial Na-K-2Cl cotransport wasstudied with the use of isotype-specific PKC inhibitors and antisenseoligodeoxynucleotides to PKC- or - mRNA. Rottlerin, a PKC-inhibitor, blocked 72% of basolateral-to-apical, bumetanide-sensitive 36Cl flux innystatin-permeabilized cell monolayers stimulated with methoxamine, an1-adrenergic agonist, with a50% inhibitory concentration of 2.3 µM. Methoxamine increased PKCactivity in cytosol and a particulate fraction; the response wasinsensitive to PKC- and -IIisotype-specific inhibitors, but was blocked by general PKC inhibitorsand rottlerin. Rottlerin also inhibited methoxamine-induced PKCactivity in immune complexes of PKC-, but not PKC-. At the subcellular level, methoxamine selectively elevated cytosolic PKC-activity and particulate PKC- activity. Pretreatment of cellmonolayers with antisense oligodeoxynucleotide to PKC- for 48 hreduced the amount of whole cell and cytosolic PKC-, diminished whole cell and cytosolic PKC- activity, and blockedmethoxamine-stimulated Na-K-2Cl cotransport. Sense oligodeoxynucleotideto PKC- and antisense oligodeoxynucleotide to PKC- did not altermethoxamine-induced cotransport activity. These results demonstrate theselective activation of Na-K-2Cl cotransport by cytosolic PKC-.

  相似文献   

6.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

7.
The APO-1/Fasligand (FasL) and tumor necrosis factor- (TNF-) are twofunctionally related molecules that induce apoptosis ofsusceptible cells. Although the two molecules have been reported toinduce apoptosis via distinct signaling pathways, we have shown that FasL can also upregulate the expression of TNF-, raising thepossibility that TNF- may be involved in FasL-inducedapoptosis. Because TNF- gene expression is under the controlof nuclear factor-B (NF-B), we investigated whether FasL caninduce NF-B activation and whether such activation plays a role inFasL-mediated cell death in macrophages. Gene transfection studiesusing NF-B-dependent reporter plasmid showed that FasL did activateNF-B promoter activity. Gel shift studies also revealed that FasLmobilized the p50/p65 heterodimeric form of NF-B. Inhibition ofNF-B by a specific NF-B inhibitor, caffeic acid phenylethylester, or by dominant expression of the NF-B inhibitory subunitIB caused an increase in FasL-induced apoptosis and areduction in TNF- expression. However, neutralization of TNF- byspecific anti-TNF- antibody had no effect on FasL-inducedapoptosis. These results indicate that FasL-mediated cell deathin macrophages is regulated through NF-B and is independent ofTNF- activation, suggesting the antiapoptotic role of NF-Band a separate death signaling pathway mediated by FasL.

  相似文献   

8.
We have investigated the role ofinhibitor B (IB) in the activation of nuclear factor B(NF-B) observed in human aortic endothelial cells (HAEC) undergoinga low shear stress of 2 dynes/cm2. Low shear for 6 hresulted in a reduction of IB levels, an activation of NF-B,and an increase in B-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion.Overexpression of IB in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation ofIB is the major factor in the low shear-induced activation ofNF-B in HAEC. We then investigated the role of nitric oxide (NO) inthe regulation of IB/NF-B. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-B activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 µM) orsodium nitroprusside (1 mM) before low shear stress significantlyincreased cytoplasmic IB and concomitantly reduced NF-Bbinding activity and B-dependent VCAM-1 promoter activity. Together,these data suggest that NO may play a major role in the regulation ofIB levels in HAEC and that the application of low shear flowincreases NF-B activity by attenuating NO generation and thusIB levels.

  相似文献   

9.
Diacylglycerol (DAG)and ceramide are important second messengers affecting cell growth,differentiation, and apoptosis. Balb/c-3T3 fibroblast cellsexpressing dopamine-D2S (short) receptors (Balb-D2S cells) provide amodel of G protein-mediated cell growth and transformation. In Balb-D2Scells, apomorphine (EC50 = 10 nM) stimulated DAG and ceramide formation by 5.6- and 4.3-fold, respectively, maximal at1 h and persisting over 6 h. These actions were blocked by pretreatment with pertussis toxin (PTX), implicatingGi/Go proteins. To address which G proteins areinvolved, Balb-D2S clones expressing individual PTX-insensitiveGi proteins were treated with PTX and tested forapomorphine-induced responses. Neither PTX-insensitive Gi2 nor Gi3 rescued D2S-induced DAG orceramide formation. Both D2S-induced DAG and ceramide signals requiredG-subunits and were blocked by inhibitors of phospholipaseC[1-(6-[([17]-3-methoxyestra-1,2,3[10]-trien- 17yl)amino]hexyl)-1H-pyrrole-2,5-dione(U-73122) and partially by D609]. The similar G protein specificity ofD2S-induced calcium mobilization, DAG, and ceramide formation indicatesa common G-dependent phospholipase C-mediated pathway. Both D2agonists and ceramide specifically induced mitogen-activated proteinkinase (ERK1/2), suggesting that ceramide mediates a novel pathway ofD2S-induced ERK1/2 activation, leading to cell growth.

  相似文献   

10.
Transforming growth factor-(TGF-) is known to induce -smooth muscle actin (-SMA) infibroblasts and is supposed to play a role in myofibroblastdifferentiation and tumor desmoplasia. Our objective was to elucidatethe impact of TGF-1 on -SMA expression in fibroblasts in athree-dimensional (3-D) vs. two-dimensional (2-D) environment. Inmonolayer culture, all fibroblast cultures responded in a similarfashion to TGF-1 with regard to -SMA expression. In fibroblastspheroids, -SMA expression was reduced and induction by TGF-1 washighly variable. This difference correlated with a differentialregulation in the TGF- receptor (TGFR) expression, in particularwith a reduction in TGF-RII in part of the fibroblast types. Ourdata indicate that 1) sensitivity to TGF-1-induced -SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, suchas a general reduction/loss in TGF-RIII, contribute to an altered TGFR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFR typesI and II determine the sensitivity to TGF-1-induced -SMAexpression in the 3-D setting. We suggest that fibroblasts that can beinduced by TGF-1 to produce -SMA in spheroid culture reflect a"premyofibroblastic" phenotype.

  相似文献   

11.
In this study, weexamined the role of the nuclear factor-B (NF-B)-inducing kinase(NIK) in distinct signaling pathways leading to NF-B activation. Weshow that a dominant-negative form of NIK (dnNIK) delivered byadenoviral (Ad5dnNIK) vector inhibits Fas-induced IBphosphorylation and NF-B-dependent gene expression in HT-29 and HeLacells. Interleukin (IL)-1- and tumor necrosis factor-(TNF-)-induced NF-B activation and B-dependent gene expressionare inhibited in HeLa cells but not in Ad5dnNIK-infected HT-29 cells.Moreover, Ad5dnNIK failed to sensitize HT-29 cells to TNF--inducedapoptosis at an early time point. However, cytokine- andFas-induced signals to NF-B are finally integrated by the IBkinase (IKK) complex, since IB phosphorylation, NF-B DNAbinding activity, and IL-8 gene expression were strongly inhibited inHT-29 and HeLa cells overexpressing dominant-negative IKK(Ad5dnIKK). Our findings support the concept that cytokine signalingto NF-B is redundant at the level of NIK. In addition, this studydemonstrates for the first time the critical role of NIK and IKK inFas-induced NF-B signaling cascade.

  相似文献   

12.
The activation of nuclear factor-B(NF-B) is required for the induction of many of the adhesionmolecules and chemokines involved in the inflammatory leukocyterecruitment to the kidney. Here we studied the effects of NF-Binhibition on the machinery crucial for monocyte infiltration of theglomerulus during inflammation. In mesangial cells (MC), the proteaseinhibitors MG-132 and N--tosyl-L-lysine chloromethyl ketone or adenoviral overexpression of IB- prevented the complete IB- degradation following tumor necrosis factor- (TNF-) stimulation. This resulted in a marked inhibition ofTNF--induced expression of mRNA and protein for the immunoglobulinmolecules intracellular adhesion molecule-1 and vascular cell adhesionmolecule-1 and the chemokines growth-related oncogene-, monocytechemoattractant protein-1, interleukin-8, or fractalkine in MC.Finally, the inhibition of IB- degradation or IB-overexpression suppressed the chemokine-induced transendothelialmonocyte chemotaxis toward MC and the chemokine-triggered firm adhesionof monocytic cells to MC. The inhibition of NF-B by pharmacologicalintervention or gene transfer may present a multimodal approach tocontrol the machinery propagating inflammatory recruitment of monocytesduring glomerular disease.

  相似文献   

13.
Tumor necrosis factor-(TNF-) triggers degranulation and oxygen radical release in adherentneutrophils. The p60TNF receptor (p60TNFR) is responsible forproinflammatory signaling, and protein kinase C (PKC) is a candidatefor the regulation of p60TNFR. Both TNF- and the PKC-activatorphorbol 12-myristate 13-acetate triggered phosphorylation of p60TNFR.Receptor phosphorylation was on both serine and threonine but not ontyrosine residues. The PKC- isotype is a candidate enzyme for serinephosphorylation of p60TNFR. Staurosporine and the PKC- inhibitorrottlerin inhibited TNF--triggered serine but not threoninephosphorylation. Serine phosphorylation was associated withreceptor desensitization, as inhibition of PKC resulted in enhanceddegranulation (elastase release). After neutrophil activation, PKC-was the only PKC isotype that associated with p60TNFR within thecorrect time frame for receptor phosphorylation. In vitro, onlyPKC-, but not the -, I-, II-, or -isotypes, wascompetent to phosphorylate the receptor, indicating that p60TNFR is adirect substrate for PKC-. These findings suggest a selective rolefor PKC- in negative regulation of the p60TNFR and ofTNF--induced signaling.

  相似文献   

14.
Tumor necrosis factor- (TNF-), oneof the major inflammatory cytokines, is known to influence endothelialcell migration. In this study, we demonstrate that exposure of calfpulmonary artery endothelial cells to TNF- caused an increase in theformation of membrane protrusions and cell migration. Fluorescencemicroscopy revealed an increase in v3focal contacts but a decrease in 51 focalcontacts in TNF--treated cells. In addition, both cell-surface andtotal cellular expression of v3-integrinsincreased significantly, whereas the expression of51-integrins was unaltered. Only focalcontacts containing v3- but not51-integrins were present in membraneprotrusions of cells at the migration front. In contrast, robust focalcontacts containing 51-integrins were present in cells behind the migration front. A blocking antibody tov3, but not a blocking antibody to5-integrins, significantly inhibited TNF--inducedcell migration. These results indicate that in response to TNF-,endothelial cells may increase the activation and ligation ofv3 while decreasing the activation andligation of 51-integrins to facilitatecell migration, a process essential for vascular wound healing and angiogenesis.

  相似文献   

15.
The phorbol ester phorbol12-myristate 13-acetate (PMA) inhibits Cl secretion(short-circuit current, Isc) and decreasesbarrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes inthis response, we compared PMA with two non-phorbol activators of PKC(bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozymeselectivity profiles. PMA sequentially inhibited cAMP-stimulatedIsc and decreased TER, as measured byvoltage-current clamp. By subcellular fractionation and Western blot,PMA (100 nM) induced sequential membrane translocation of the novelPKC followed by the conventional PKC and activated both isozymesby in vitro kinase assay. PKC was activated by PMA but did nottranslocate. By immunofluorescence, PKC redistributed to thebasolateral domain in response to PMA, whereas PKC moved apically.Inhibition of Isc by PMA was prevented by theconventional and novel PKC inhibitor Gö-6850 (5 µM) but not theconventional isoform inhibitor Gö-6976 (5 µM) or the PKCinhibitor rottlerin (10 µM), implicating PKC in inhibition ofCl secretion. In contrast, both Gö-6976 andGö-6850 prevented the decline of TER, suggesting involvement ofPKC. Bryostatin-1 (100 nM) translocated PKC and PKC andinhibited cAMP-elicited Isc. However, unlikePMA, bryostatin-1 downregulated PKC protein, and the decrease in TERwas only transient. Carbachol (100 µM) translocated only PKC andinhibited Isc with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1and carbachol inhibition of Isc. We concludethat basolateral translocation of PKC inhibits Clsecretion, while apical translocation of PKC decreases TER. Thesedata suggest that epithelial transport and barrier function can bemodulated by distinct PKC isoforms.

  相似文献   

16.
Functional overload (OL)of the rat plantaris muscle by the removal of synergistic musclesinduces a shift in the myosin heavy chain (MHC) isoform expressionprofile from the fast isoforms toward the slow type I, or, -MHCisoform. Different length rat -MHC promoters were linked to afirefly luciferase reporter gene and injected in control and OLplantaris muscles. Reporter activities of 3,500, 914, 408, and215 bp promoters increased in response to 1 wk of OL. The smallest171 bp promoter was not responsive to OL. Mutation analyses ofputative regulatory elements within the 171 and 408 bp region wereperformed. The 408 bp promoters containing mutations of the e1,distal muscle CAT (MCAT; e2), CACC, or A/T-rich (GATA), were stillresponsive to OL. Only the proximal MCAT (e3) mutation abolished theOL response. Gel mobility shift assays revealed a significantly higherlevel of complex formation of the e3 probe with nuclear protein fromOL plantaris compared with control plantaris. These results suggestthat the e3 site functions as a putative OL-responsive element inthe rat -MHC gene promoter.

  相似文献   

17.
Short-term regulation of sodiummetabolism is dependent on the modulation of the activity of sodiumtransporters by first and second messengers. In understanding diseasesassociated with sodium retention, it is necessary to identify thecoupling between these messengers. We have examined whether dopamine,an important first messenger in tubular cells, activates andtranslocates various protein kinase C (PKC) isoforms. We used aproximal tubular-like cell line, LLCPK-1 cells, in which dopamine wasfound to inhibit Na+-K+-ATPase in aPKC-dependent manner. Translocation of PKC isoforms was studied withboth subcellular fractionation and confocal microscopy. Both techniquesrevealed a dopamine-induced translocation from cytosol to plasmamembrane of PKC- and -, but not of PKC-, -, and -. Theprocess of subcellular fractionation resulted in partial translocationof PKC-. This artifact was eliminated in confocal studies. Confocalimaging permitted detection of translocation within 20 s.Translocation was abolished by a phospholipase C inhibitor and by anantagonist against the dopamine 1 subtype (D1) but not the2 subtype of receptor (D2). In conclusion, this studyvisualizes in renal epithelial cells a very rapid activation of thePKC- and - isoforms by the D1 receptor subtype.

  相似文献   

18.
Accelerated vascular smooth muscle cell(VSMC) proliferation contributes to the formation of atheroscleroticlesions. To investigate protein kinase C (PKC)-II functions withregard to glucose-induced VSMC proliferation, human VSMC from aorta(AoSMC), a clonal VSMC line of rat aorta (A10), and A10 cellsoverexpressing PKC-I (I-A10) and PKC-II (II-A10) werestudied with the use of three techniques to evaluate glucose effects onaspects affecting proliferation. High glucose (25 mM) increased DNAsynthesis and accelerated cell proliferation compared with normalglucose (5.5 mM) in AoSMC and A10 cells, but not in I-A10 andII-A10 cells. The PKC-II specific inhibitor CGP-53353 inhibitedglucose-induced cell proliferation and DNA synthesis in AoSMC and A10cells. In flow cytometry analysis, high glucose increased thepercentage of A10 cells at 12 h after cell cycle initiation butdid not increase the percentage of I-A10 or II-A10 cells enteringS phase. PKC-II protein levels decreased before the peak of DNAsynthesis, and high glucose further decreased PKC-II mRNA andprotein levels in AoSMC and A10 cells. These results suggest that highglucose downregulates endogenous PKC-II, which then alters thenormal inhibitory role of PKC-II in cell cycle progression,resulting in the stimulation of VSMC proliferation through acceleration of the cell cycle.

  相似文献   

19.
Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we haveobserved that cardiac fibroblasts harbor five different RGD-bindingintegrins: 81,31, 51, v1, and v3.Stimulation of cardiac fibroblasts by angiotensin II (ANG II) ortransforming growth factor-1 (TGF-1) resulted in an increase ofprotein and heightening by 50% of the receptor density of81-integrin. The effect of ANG II wasblocked by an AT1, but not an AT2, receptorantagonist, or by an anti-TGF-1 antibody. ANG II and TGF-1increased fibronectin secretion, smooth muscle -actin synthesis, andformation of actin stress fibers and enhanced attachment of fibroblaststo a fibronectin matrix. The 8- and1-subunits were colocalized by immunocytochemistry with vinculin or 3-integrin at focal adhesion sites.These results indicate that 81-integrinis an abundant integrin on rat cardiac fibroblasts. Its positivemodulation by ANG II and TGF-1 in a myofibroblast-likephenotype suggests the involvement of81-integrin in extracellularmatrix protein deposition and cardiac fibroblast adhesion.

  相似文献   

20.
It has long been known thatNa+ channels in electrically tight epithelia are regulatedby homeostatic mechanisms that maintain a steady state and allow newlevels of transport to be sustained in hormonally challenged cells.Little is known about the potential pathways involved in theseprocesses. In addition to short-term effect, recent evidence alsoindicates the involvement of PKC in the long-term regulation of theepithelial Na+ channel (ENaC) at the protein level(40). To determine whether stimulation of ENaC involvesfeedback regulation of PKC levels, we utilized Western blot analysis todetermine the distribution of PKC isoforms in polarized A6 epithelia.We found the presence of PKC isoforms in the conventional ( and), novel (, , and ), and atypical (, , and) groups. Steady-state stimulation of Na+ transport withaldosterone was accompanied by a specific decrease of PKC proteinlevels in both the cytoplasmic and membrane fractions. Similarly,overnight treatment with an uncharged amiloride analog (CDPC), aprocedure that through feedback regulation causes a stimulation ofNa+ transport, also decreased PKC levels. These effectswere additive, indicating separate mechanisms that converge at thelevel of PKC. These effects were not accompanied by changes ofPKC mRNA levels as determined by Northern blot analysis. We proposethat this may represent a novel regulatory feedback mechanism necessary for sustaining an increase of Na+ transport.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号