首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular engine that drives bidirectional replication fork movement from the Escherichia coli replication origin (oriC) is the replicative helicase, DnaB. At oriC, two and only two helicase molecules are loaded, one for each replication fork. DnaA participates in helicase loading; DnaC is also involved, because it must be in a complex with DnaB for delivery of the helicase. Since DnaA induces a local unwinding of oriC, one model is that the limited availability of single-stranded DNA at oriC restricts the number of DnaB molecules that can bind. In this report, we determined that one DnaB helicase or one DnaB-DnaC complex is bound to a single-stranded DNA in a biologically relevant DNA replication system. These results indicate that the availability of single-stranded DNA is not a limiting factor and support a model in which the site of entry for DnaB is altered so that it cannot be reused. We also show that 2-4 DnaA monomers are bound on the single-stranded DNA at a specific site that carries a DnaA box sequence in a hairpin structure.  相似文献   

2.
Initiation of chromosomal replication and its cell cycle-coordinated regulation bear crucial and fundamental mechanisms in most cellular organisms. Escherichia coli DnaA protein forms a homomultimeric complex with the replication origin (oriC). ATP-DnaA multimers unwind the duplex within the oriC unwinding element (DUE). In this study, structural analyses suggested that several residues exposed in the central pore of the putative structure of DnaA multimers could be important for unwinding. Using mutation analyses, we found that, of these candidate residues, DnaA Val-211 and Arg-245 are prerequisites for initiation in vivo and in vitro. Whereas DnaA V211A and R245A proteins retained normal affinities for ATP/ADP and DNA and activity for the ATP-specific conformational change of the initiation complex in vitro, oriC complexes of these mutant proteins were inactive in DUE unwinding and in binding to the single-stranded DUE. Unlike oriC complexes including ADP-DnaA or the mutant DnaA, ATP-DnaA-oriC complexes specifically bound the upper strand of single-stranded DUE. Specific T-rich sequences within the strand were required for binding. The corresponding conserved residues of the DnaA ortholog in Thermotoga maritima, an ancient eubacterium, were also required for DUE unwinding, consistent with the idea that the mechanism and regulation for DUE unwinding can be evolutionarily conserved. These findings provide novel insights into mechanisms for pore-mediated origin unwinding, ATP/ADP-dependent regulation, and helicase loading of the initiation complex.  相似文献   

3.
An upshift of 10 degrees C or more in the growth temperature of an Escherichia coli culture causes induction of extra rounds of chromosome replication. This stress replication initiates at oriC but has functional requirements different from those of cyclic replication. We named this phenomenon heat-induced replication (HIR). Analysis of HIR in bacterial strains that had complete or partial oriC deletions and were suppressed by F integration showed that no sequence outside oriC is used for HIR. Analysis of a number of oriC mutants showed that deletion of the L-13-mer, which makes oriC inactive for cyclic replication, was the only mutation studied that inactivated HIR. The requirement for this sequence was strictly correlated with Benham's theoretical stress-induced DNA duplex destabilization. oriC mutations at DnaA, FIS, or IHF binding sites showed normal HIR activation, but DnaA was required for HIR. We suggest that strand opening for HIR initiation occurs due to heat-induced destabilization of the L-13-mer, and the stable oligomeric DnaA-single-stranded oriC complex might be required only to load the replicative helicase DnaB.  相似文献   

4.
5.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

6.
7.
The initiation of chromosome replication in Escherichia coli requires the recruitment of the replicative helicase DnaB from the DnaBC complex to the unwound region within the replication origin oriC, supported by the oriC-bound initiator protein DnaA. We defined physical contacts between DnaA and DnaB that involve residues 24-86 and 130-148 of DnaA and residues 154-210 and 1-156 of DnaB respectively. We propose that contacts between DnaA and DnaB occur via two interaction sites on each of the proteins. Interaction domain 24-86 of DnaA overlaps with its N-terminal homo-oligomerization domain (residues 1-86). Interaction domain 154-210 of DnaB overlaps or is contiguous with the domains known to interact with plasmid initiator proteins. Loading of the DnaBC helicase in vivo can only be performed by DnaA derivatives containing (in addition to residues 24-86 and the DNA-binding domain 4) a structurally intact domain 3. Nucleotide binding by domain 3 is, however, not required. The parts of DnaA required for replication of pSC101 were clearly different from those used for helicase loading. Domains 1 and 4 of DnaA, but not domain 3, were found to be involved in the maintenance of plasmid pSC101.  相似文献   

8.
Initiation of DNA replication at the Escherichia coli chromosomal origin, oriC, occurs through an ordered series of events that depend first on the binding of DnaA protein, the replication initiator, to DnaA box sequences within oriC followed by unwinding of an AT-rich region near the left border. The prepriming complex then forms, involving the binding of DnaB helicase at oriC so that it is properly positioned at each replication fork. We assembled and isolated the prepriming complexes on an oriC plasmid, then determined the stoichiometries of proteins in these complexes by quantitative immunoblot analysis. DnaA protein alone binds to oriC with a stoichiometry of 4-5 monomers per oriC DNA. In the prepriming complex, the stoichiometries are 10 DnaA monomers and 2 DnaB hexamers per oriC plasmid. That only two DnaB hexamers are bound, one for each replication fork, suggests that the binding of additional molecules of DnaA in forming the prepriming complex restricts the loading of additional DnaB hexamers that can bind at oriC.  相似文献   

9.
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which involves the hydrolysis of ATP bound to DnaC. Recent evidence indicates that DnaC acts as a checkpoint in the transition from initiation to the elongation stage of DNA replication. Freed from DnaC, DnaB helicase unwinds the parental duplex DNA while interacting the cellular replicase, DNA polymerase III holoenzyme, and primase as it intermittently forms primers that are extended by the replicase in duplicating the chromosome.  相似文献   

10.
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M. tuberculosis DnaA (DnaA(TB)) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaA(TB) promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaA(TB) proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non-viability, presumably due to a defect in oriC-DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaA(TB) bound to DnaA boxes similarly with ATP or ADP. DnaA(TB) binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.  相似文献   

11.
In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or interdependent by substituting many conserved amino acids in this region with alanine to identify essential residues. We show that alanine substitutions of leucine 3, phenylalanine 46, and leucine 62 do not affect DnaA function in initiation. In contrast, we find on characterization of a mutant DnaA that tryptophan 6 is essential for DnaA function because its substitution by alanine abrogates self-oligomerization, resulting in the failure to load DnaB at oriC. These results indicate that DnaA bound to oriC forms a specific oligomeric structure, which is required to load DnaB helicase.  相似文献   

12.
DnaA forms a homomultimeric complex with the origin of chromosomal replication (oriC) to unwind duplex DNA. The interaction of the DnaA N terminus with the DnaB helicase is crucial for the loading of DnaB onto the unwound region. Here, we determined the DnaA N terminus structure using NMR. This region (residues 1-108) consists of a rigid region (domain I) and a flexible region (domain II). Domain I has an alpha-alpha-beta-beta-alpha-beta motif, similar to that of the K homology (KH) domain, and has weak affinity for oriC single-stranded DNA, consistent with KH domain function. A hydrophobic surface carrying Trp-6 most likely forms the interface for domain I dimerization. Glu-21 is located on the opposite surface of domain I from the Trp-6 site and is crucial for DnaB helicase loading. These findings suggest a model for DnaA homomultimer formation and DnaB helicase loading on oriC.  相似文献   

13.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

14.
Two distinct regions in the replication origin, oriC, of Escherichia coli are separately distorted upon initiation complex formation by the initiator protein DnaA. The AT-rich region in the left part of oriC and the start site region in the right part of oriC. Chemical modification of single-stranded DNA was observed at both regions whereas endonuclease recognition of DNA mini-bulges specifically occurred in the start site region. We show that the helical phasing of binding sites for DnaA protein in oriC is important for origin function. An insertion or deletion of one helical turn between the two rightmost binding sites does not alter the efficiency of replication initiation, whereas all modifications of distance by less or more than one helical turn result in inactivation of oriC. DnaA binding and helical distortions in the AT-rich region as well as in the start site region are not affected in the distance mutants irrespective of their functionality in vivo. We propose a specific compact nucleoprotein structure for the initiation complex.  相似文献   

15.
This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.  相似文献   

16.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

17.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

18.
New rounds of bacterial chromosome replication are triggered during each cell division cycle by the initiator protein, DnaA. For precise timing, interactions of DnaA-ATP monomers with the replication origin, oriC, must be carefully regulated during formation of complexes that unwind origin DNA and load replicative helicase. Recent studies in Escherichia coli suggest that high and low affinity DnaA recognition sites are positioned within oriC to direct staged assembly of bacterial pre-replication complexes, with DnaA contacting low affinity sites as it oligomerizes to 'fill the gaps' between high affinity sites. The wide variability of oriC DnaA recognition site patterns seen in nature may reflect myriad gap-filling strategies needed to couple oriC function to the lifestyle of different bacterial types.  相似文献   

19.
C Weigel  A Schmidt  B Rückert  R Lurz    W Messer 《The EMBO journal》1997,16(21):6574-6583
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

20.
The opening of the three tandem 13-mers (iterons) in the replication origin (oriC) of Escherichia coli by DnaA protein, assisted by protein HU or IHF (Hwang, D. S., and Kornberg, A. (1992) J. Biol. Chem. 267, 23083-23086), represents an essential early stage in the initiation of chromosomal replication (Bramhill, D., and Kornberg, A. (1988) Cell 54, 915-918). We now show by mutational alterations of the 13-mer region that oriC function, both in vitro and in vivo, requires AT-richness in the left 13-mer and sequence specificity in the middle and right 13-mers. Interactions of DnaA protein with the middle and right 13-mers are crucial for the opening of the region. Binding of the protein to the top strand of the 13-mers appeared to maintain single-strandedness in the bottom strand. IciA protein, the inhibitor of initiation, binds the three 13-mers and blocks the opening of the region. The degrees of inhibition by IciA protein of 13-mer opening and of oriC plasmid replication observed with mutant forms of the 13-mers could be correlated with the binding affinity of IciA protein. Whereas the binding of IciA protein to the 13-mers did not affect the binding of DnaA protein to its four 9-mers boxes, interaction of DnaA protein with the 13-mers was blocked. The selective interactions of DnaA and IciA proteins with the 13-mer region appear to be components of the on/off switch that controls initiation of E. coli chromosomal replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号