首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The metabolism of inositol 1,3,4-trisphosphate is a pivotal branch point of inositol phosphate turnover; its dephosphorylation replenishes cellular inositol pools, its phosphorylation at the 6-position supports the synthesis of inositol pentakisphosphate, and its phosphorylation at the 5-position produces inositol 1,3,4,5-tetrakisphosphate (Shears, S.B. (1989) J. Biol. Chem. 264, 19879-19886). In order to increase understanding of the control of inositol-1,3,4-trisphosphate kinase activity, the enzyme was highly purified from rat liver by precipitation with polyethylene glycol, MonoQ ion-exchange chromatography, heparin-agarose affinity chromatography, and a novel affinity chromatography procedure that utilized Affi-Gel resin to which InsP6 was coupled (Marecek, J.F., and Prestwich, G.D. (1991) Tetrahedron Lett. 32, 1863-1866). The final purification was about 26,000-fold, with a 6% yield. This final preparation performed both 5- and 6-kinase activities in the ratio of approximately 1:5. The affinity of the enzyme for inositol 1,3,4-trisphosphate was 0.04 microM, the highest yet determined for an inositol phosphate kinase. Both inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate were competitive inhibitors of the kinase (Ki values of 2-4 microM). The enzyme was determined to have a molecular mass of 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity was unaffected by Ca2+/calmodulin, protein kinase A, or protein kinase C.  相似文献   

2.
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.  相似文献   

3.
The two-step isomerization of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to Ins-1,3,4-P3 via the intermediate inositol 1,3,4,5-tetrakisphosphate (Ins-P4) was studied in intact RINm5F cells and in subcellular fractions. Muscarinic stimulation with carbamylcholine leads to a rapid (2 s) rise in both Ins-1,4,5-P3 and Ins-P4, whereas Ins-1,3,4-P3 was produced only after a lag of at least 5 s. In cells with depleted Ca2+ stores, the rise in Ins-1,4,5-P3 was nearly tripled, and that of Ins-1,3,4-P3 markedly diminished as compared to control cells. Raising the free Ca2+ concentration from 10(-7) to 10(-5) M increased inositol 1,4,5-triphosphate-3-kinase activity in cytosolic fractions by 2 1/2-fold (EC50 for Ca2+ approximately 0.8 microM) but had no effect on the activity of inositol 1,4,5-triphosphate-5-phosphomonoesterase. At 10(-7) M Ca2+ these two enzymes displayed comparable activity when assayed at concentrations of Ins-1,4,5-P3 occurring in stimulated cells; however, at 10(-5) M Ca2+, kinase activity predominates. These results suggest that Ins-1,4,5-P3 counter-regulates its own levels through the activity of inositol 1,4,5-trisphosphate 3-kinase and that the increase in [Ca2+]i may account for the transience of the rise in Ins-1,4,5-P3 seen during muscarinic stimulation of RINm5F cells.  相似文献   

4.
A new de novo synthesis of the enantiomeric pair D-myo-inositol 1,2,4-trisphosphate and D-myo-inositol 2,3,6-trisphosphate is described. Starting from enantiopure dibromocyclohexenediol, several C2 symmetrical building blocks were synthesized which gave access to D-myo-inositol 1,2,4,5-tetrakisphosphate and D-myo-inositol 1,2,3,6-tetrakisphosphate. Exploiting the high regiospecificity of two partially purified phosphohydrolases from Dictyostelium, a 5-phosphatase and a phytase, the inositol tetrakisphosphates were converted enzymatically to the target compounds. Their potential to modulate the activity of Ins3,4,5,6P4 1-kinase was investigated and compared with the effects of D-myo-inositol 1,3,4-trisphosphate.  相似文献   

5.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

6.
High performance liquid chromatography analysis of supernatants from acid-quenched [3H]inositol-labeled parotid acinar cells revealed an inositol pentakisphosphate and three inositol tetrakisphosphates. Two of the latter were identified as the 1,3,4,5 and 1,3,4,6 isomers, whereas the third was probably a mixture of unknown proportions of the 3,4,5,6/1,4,5,6 enantiomeric pair. Methacholine (100 microM) produced a 40-50-fold increase in the levels of inositol trisphosphate (mainly the 1,3,4 isomer) and inositol 1,3,4,5-tetrakisphosphate, but inositol 1,3,4,6-tetrakisphosphate only increased 5-fold. Levels of inositol 3,4,5,6/1,4,5,6-tetrakisphosphate and inositol pentakisphosphate were unaffected by agonist stimulation. Thus, in parotid cells, an agonist-induced increase in both inositol trisphosphate and inositol 1,3,4,6-tetrakisphosphate formation does not result in an increase in the rate of formation of inositol pentakisphosphate. Following the addition of 100 microM atropine to methacholine-stimulated parotid cells, the levels of [3H]inositol 1,3,4,5-tetrakisphosphate fell rapidly, returning to basal levels within 5 min. Inositol trisphosphate was metabolized more slowly and was still elevated 20-fold above basal 5 min after the addition of atropine. Inositol 1,3,4,6-tetrakisphosphate was metabolized much more slowly (t1/2 approximately 15 min). Inositol 1,3,4-trisphosphate metabolism was examined in parotid homogenates as well as in 100,000 x g cytosolic and particulate fractions. Inositol 1,3,4-trisphosphate was both dephosphorylated and phosphorylated. Two inositol tetrakisphosphate products were formed, namely the 1,3,4,6 and 1,3,4,5 isomers. Over 90% of both kinase and phosphatase activities were found in the cytosolic fractions. The ratio of activities of kinase to phosphatase decreased as the levels of inositol 1,3,4-trisphosphate substrate were increased from 1 nM to 10 microM. These data led to the conclusion that the kinetic parameters of the inositol 1,3,4-trisphosphate kinases and phosphatases are such that in stimulated cells, dephosphorylation of inositol 1,3,4-trisphosphate is greatly favored. Inositol 1,3,4-trisphosphate kinase activity was potently inhibited by inositol 3,4,5,6-tetrakisphosphate (IC50 = 0.1-0.2 microM), which leads us to propose that inositol 3,4,5,6-tetrakisphosphate is an endogenous inhibitor of the kinase.  相似文献   

7.
Inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) metabolism has been studied in liver homogenates and in 100,000 x g supernatant and particulate fractions. When liver homogenates were incubated in an "intracellular" medium containing 5 mM MgATP, equal proportions of Ins(1,3,4)P3 were dephosphorylated and phosphorylated. Two inositol tetrakisphosphate (InsP4) products and an inositol pentakisphosphate (InsP5) were detected. The InsP4 isomers were unequivocally identified as inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) by high performance liquid chromatography separation of inositol phosphates, periodate oxidation, alkaline hydrolysis, and stereo-specific polyol dehydrogenase. Ins(1,3,4)P3 5-kinase is a novel enzyme activity and accounted for 16% of the total Ins(1,3,4)P3 phosphorylation. Ins(1,3,4,6)P4 was also shown to be further phosphorylated to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) by a kinase not previously known to occur in liver. About 75% of Ins(1,3,4)P3 kinase activities were soluble and were partly purified by anion-exchange fast protein liquid chromatography. The two Ins(1,3,4)P3 kinase activities eluted as a single peak that was well resolved from Ins(1,3,4)P3 phosphatase, Ins(1,3,4,6)P4 5-kinase, and Ins(1,3,4,5)P4 5-phosphatase activities. A further novel observation was that 10 microM Ins(1,3,4,5)P4 inhibited Ins(1,3,4)P3 kinase activities by 60%.  相似文献   

8.
The metabolism of [3H]inositol (1,4,5)-trisphosphate was followed in permeabilized bovine adrenal glomerulosa cells. At low Ca++ concentration (pCa = 7.2), more than 90% of [3H]inositol (1,4,5)-trisphosphate had disappeared within 2 min, while two other metabolites, [3H]inositol (1,3,4)-trisphosphate and [3H]inositol (1,3,4,5)-tetrakisphosphate appeared progressively. At higher Ca++ concentrations (pCa = 5.7 and 4.8), the formation of these two metabolites was markedly increased, but completely abolished if the medium was ATP-depleted. The peak levels for the generation of [3H]inositol (1,3,4,5)-tetrakisphosphate (1 min) preceded those of [3H]inositol (1,3,4)-trisphosphate and were closely correlated. These results suggest that, in adrenal glomerulosa cells, the isomer inositol (1,3,4)-trisphosphate is generated from inositol (1,4,5)-trisphosphate via a calcium-sensitive and ATP-dependent phosphorylation/dephosphorylation pathway involving the formation of inositol (1,3,4,5)-tetrakisphosphate.  相似文献   

9.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

10.
The human inositol phosphate multikinase (IPMK, 5-kinase) has a preferred 5-kinase activity over 3-kinase and 6-kinase activities and a substrate preference for inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) over inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). We now report that the recombinant human protein can catalyze the conversion of inositol 1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)P4) to Ins(1,3,4,5,6)P5 in vitro; the reaction product was identified by HPLC to be Ins(1,3,4,5,6)P5. The apparent Vmax was 42 nmol of Ins(1,3,4,5,6)P5 formed/min/mg protein, and the apparent Km was 222 nM using Ins(1,3,4,6)P4 as a substrate; the catalytic efficiency was similar to that for Ins(1,4,5)P3. Stable over-expression of the human protein in HEK-293 cells abrogates the in vivo elevation of Ins(1,4,5,6)P4 from the Salmonella dublin SopB protein. Hence, the human 5-kinase may also regulate the level of Ins(1,4,5,6)P4 and have an effect on chloride channel regulation.  相似文献   

11.
Carbachol stimulation of muscarinic receptors in rat cortical slices prelabelled with myo-[2-3H]inositol caused the rapid formation of a novel inositol polyphosphate. Evidence derived from its chromatographic behaviour, and from the structure of the products formed in partial dephosphorylation experiments, suggests that it is probably D-myo-inositol 1,3,4,5-tetrakisphosphate. An enzyme in human red cell membranes specifically removes the 5-phosphate from it to form inositol 1,3,4-trisphosphate. It is suggested that inositol 1,3,4,5-tetrakisphosphate is likely to be a second messenger, and that it is the precursor of inositol 1,3,4-trisphosphate and possibly of inositol 1,4,5-trisphosphate.  相似文献   

12.
Inositol hexakisphosphate and other inositol high polyphosphates have diverse and critical roles in eukaryotic regulatory pathways. Inositol 1,3,4-trisphosphate 5/6-kinase catalyzes the rate-limiting step in inositol high polyphosphate synthesis in animals. This multifunctional enzyme also has inositol 3,4,5,6-tetrakisphosphate 1-kinase and other activities. The structure of an archetypal family member, from Entamoeba histolytica, has been determined to 1.2 A resolution in binary and ternary complexes with nucleotide, substrate, and product. The structure reveals an ATP-grasp fold. The inositol ring faces ATP edge-on such that the 5- and 6-hydroxyl groups are nearly equidistant from the ATP gamma-phosphate in catalytically productive phosphoacceptor positions and explains the unusual dual site specificity of this kinase. Inositol tris- and tetrakisphosphates interact via three phosphate binding subsites and one solvent-exposed site that could in principle be occupied by 18 different substrates, explaining the mechanisms for the multiple specificities and catalytic activities of this enzyme.  相似文献   

13.
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle.  相似文献   

14.
Phospholipase C cleaves phosphatidylinositol 4,5-bisphosphate to form both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,2-cyclic 4,5-trisphosphate (cInsP3). The further metabolism of these inositol trisphosphates is determined by two enzymes: a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate (InsP4), while the latter forms inositol 1,4-bisphosphate and inositol 1,2-cyclic 4-bisphosphate from Ins(1,4,5)P3 and cInsP3, respectively. The current studies show that the 3-kinase is unable to phosphorylate cInsP3. Also, the 5-phosphomonoesterase hydrolyzes InsP4 with an apparent Km of 0.5-1.0 microM to form inositol 1,3,4-trisphosphate at a maximal velocity approximately 1/30 that for Ins(1,4,5)P3. The apparent affinity of the enzyme for the three substrates is InsP4 greater than Ins(1,4,5)P3 greater than cInsP3; however, the rate at which the phosphatase hydrolyzes these substrates is Ins(1,4,5)P3 greater than cInsP3 greater than InsP4. The 5-phosphomonoesterase and 3-kinase enzymes may control the levels of inositol trisphosphates in stimulated cells. The 3-kinase has a low apparent Km for Ins(1,4,5)P3 as does the 5-phosphomonoesterase for InsP4, implying that the formation and breakdown of InsP4 may proceed when both it and its precursor are present at low levels. Ins(1,4,5)P3 is utilized by both the 3-kinase and 5-phosphomonoesterase, while cInsP3 is utilized relatively poorly only by the 5-phosphomonoesterase. These findings imply that inositol cyclic trisphosphate may be metabolized slowly after its formation in stimulated cells.  相似文献   

15.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

16.
Integration of inositol phosphate signaling pathways via human ITPK1   总被引:2,自引:0,他引:2  
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical cellular activities. In mammals it has been established that inositol 1,3,4-trisphosphate, produced from inositol 1,4,5-trisphosphate, lies in a branch of the metabolic pathway that is separate from inositol 3,4,5,6-tetrakisphosphate, which inhibits plasma membrane chloride channels. We have determined the molecular mechanism for communication between these two pathways, showing that phosphate is transferred between inositol phosphates via ITPK1-bound nucleotide. Intersubstrate phosphate transfer explains how competing substrates are able to stimulate each others' catalysis by ITPK1. We further show that these features occur in the human protein, but not in plant or protozoan homologues. The high resolution structure of human ITPK1 identifies novel secondary structural features able to impart substrate selectivity and enhance nucleotide binding, thereby promoting intersubstrate phosphate transfer. Our work describes a novel mode of substrate regulation and provides insight into the enzyme evolution of a signaling mechanism from a metabolic role.  相似文献   

17.
Phosphorylation of inositol 1,3,4-trisphosphate by inositol 1,3,4-trisphosphate 5/6-kinase is the first committed step in the formation of higher phosphorylated forms of inositol. We have shown that the eight proteins called the COP9 signalosome complex copurify with calf brain 5/6-kinase. Because the complex has been shown to phosphorylate c-Jun in vitro, we tested both the complex and 5/6-kinase and found that both are able to phosphorylate c-Jun and ATF-2 on serine/threonine residues. These findings establish a link between two major signal transduction systems: the inositol phosphates and the stress response system.  相似文献   

18.
Rat-1 fibroblasts transformed with the v-src oncogene show a 6-fold increase in the apparent amount of an inositol polyphosphate which has a high performance liquid chromatography (HPLC) elution characteristic of the D/L-myo-inositol 1,4,5,6-tetrakisphosphate enantiomeric pair (Johnson, R.M., Wasilenko, W.J., Mattingly, R.R., Weber, M.J., and Garrison, J.C. (1989) Science 246, 121-124). By chemical and enzymatic analysis, the structure of this compound produced in both normal and v-src-transformed rat-1 fibroblasts has been determined to be principally D-myoinositol 1,4,5,6-tetrakisphosphate (D-Ins(1,4,5,6)P4). Chronic stimulation with endothelin-1 in the presence of Li+ significantly increased the amount of D/L-Ins(1,4,5,6)P4 only in the v-src-transformed rat-1 cells, suggesting that production of this compound may be remotely coupled to long term agonist-induced phosphatidylinositol turnover. Further evidence for such a link is provided by the progressive loss of D-Ins(1,4,5,6)P4 from the normal cells deprived of serum stimulation. To define a possible synthetic pathway for D-Ins(1,4,5,6)P4, cytosolic extracts of normal and v-src-transformed cells were incubated with [3H]inositol polyphosphates, and the reaction products were identified by HPLC elution and chemical analysis. Although inositol 1,3,4-trisphosphate 6-kinase activity was prominent in extracts of both normal and transformed cells, only the cytosol from v-src-transformed cells ultimately formed measurable amounts of D-Ins(1,4,5,6)P4 from [3H]inositol 1,3,4-trisphosphate. Approximately 6% of 0.1 microM inositol 1,3,4-trisphosphate was converted to D-Ins(1,4,5,6)P4 during a 2-h incubation at 37 degrees C. Inositol pentakisphosphate was identified as a likely intermediate in this conversion, and extracts of both normal and transformed cells converted [3H]inositol 1,3,4,5,6-pentakisphosphate to D-Ins(1,4,5,6)P4. The synthetic pathway described is consistent with the long term regulation of D/L-Ins(1,4,5,6)P4 levels in rat-1 fibroblasts seen in response to src transformation, serum withdrawal, and chronic endothelin treatment, and identifies several new potential interactions between the pathways of inositol polyphosphate metabolism and those of src transformation.  相似文献   

19.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

20.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号