首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piperazinyl benzamidines were prepared and found to bind to the rat delta (delta) opioid receptor. The most active compounds had a N,N-diethylcarboxamido group and a N-benzyl piperazine. The most potent among these was N,N-diethyl-4-[4-(phenylmethyl)-1-piperazinyl][2-(trifluoromethyl)phenyl]iminomethyl]benzamide (27) with a 1.22nM K(i) for the rat delta opioid receptor and ca. 1000 x selectivity relative to the mu opioid subtype.  相似文献   

2.
Yang S  Sonoda S  Chen L  Yoshikawa M 《Peptides》2003,24(4):503-508
To study the structure-activity relationship of rubiscolins (YPLDLF and YPLDL), delta opioid peptides derived from the spinach Rubisco, we substituted the amino acid residues and evaluated their activities by mouse vas deferens (MVD) and guinea pig ileum (GPI) assays as well as receptor affinity. Replacement of Leu(3) with Ile and Met in rubiscolin-6 potentiated the delta opioid activity by about four times in MVD assay. Asp(4) cannot be replaced by Ala, Glu or His. The original Leu(5) was optimal, while substitution of Phe(6) with Val potentiated its delta opioid activity by more than 10 times. The most potent derivative we obtained was YPMDLV, which was nearly 20 times more potent than rubiscolin-6 in MVD assay. The derivatives thus obtained showed higher delta receptor affinity and more potent antinociceptive activity than rubiscolins.  相似文献   

3.
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.  相似文献   

4.
Binding characteristics of a new, conformationally constrained, halogenated enkephalin analogue, [3H]-[D-penicillamine2, pCl-Phe4, D-penicillamine5]enkephalin ([3H]pCl-DPDPE), were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C determined a dissociation constant (Kd) of 328 +/- 27.pM and a receptor density (Bmax) of 87.2 +/- 4.2 fmol/mg protein. Kinetic studies demonstrated biphasic association for [3H]pCl-DPDPE, with association rate constants of 5.05 x 10(8) +/- 2.5 x 10(8) and 0.147 +/- 10(8) +/- 0.014 x 10(8) M-1 min-1. Dissociation was monophasic with a dissociation rate constant of 2.96 x 10(-3) +/- 0.25 x 10(-3) min-1. The average Kd values determined by these kinetic studies were 8.4 +/- 2.7 pM and 201 +/- 4 pM. Competitive inhibition studies demonstrated that [3H]pCl-DPDPE has excellent selectively for the delta opioid receptor. [3H]pCl-DPDPE binding was inhibited by low concentrations of ligands selective for delta opioid receptor relative to the concentrations required by ligands selective for mu and kappa sites. These data show that [3H]pCl-DPDPE is a highly selective, high affinity ligand which should be useful in characterizing the delta opioid receptor.  相似文献   

5.
Several peptides of diverse structure, reported to possess high affinity and selectivity for the delta opioid receptor, were studied using the mouse isolated vas deferens preparation to determine the effect of peptidase inhibition on their apparent potency. The peptides evaluated included [Leu5] enkephalin, the cyclic enkephalin analogs [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Pen2,p-F-Phe4,D-Pen5]enkephalin (F-DPDPE), the linear enkephalin analogs [D-Ala2,D-Leu5]enkephalin (DADLE) and [D-Ser2(O-tBu), Leu5,Thr6]enkephalin (DSTBULET), and the naturally occurring amphibian peptides Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 (dermenkephalin), Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 (deltorphin I) and Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 (deltorphin II). Concentration-response curves were determined for each peptide in the absence and presence of a combination of the peptidase-inhibiting agents bacitracin, bestatin, and captopril. A wide range of potencies was observed, both in the control state and in the presence of peptidase inhibition. The synthetic enkephalin analogs demonstrated small increases in potency with peptidase inhibition (no increase in the case of DPDPE), whereas the naturally occurring peptides were markedly increased in potency, up to as much as 123-fold for dermenkephalin. In the presence of peptidase inhibition, deltorphin II was the most potent peptide tested (IC50 = 1.13 x 10(-10) molar), and as such is the most potent delta opioid agonist reported to date. Stability to metabolism must be considered in the design and evaluation of in vitro experiments using peptides of this type.  相似文献   

6.
A series of Dmt-Tic analogues with substitution on the Tic aromatic ring has been synthesized and evaluated for opioid receptor affinity and activation. Incorporation of large hydrophobic groups at position 7 of Tic did not greatly alter the delta opioid receptor binding affinities of the dipeptides whereas substitution at position 6 substantially diminished their affinity. These modified Dmt-Tic peptides showed binding affinities as low as 2.5 nM with up to 500-fold selectivity for the delta versus mu opioid receptor and proved to be delta receptor antagonists.  相似文献   

7.
New 4-anilidopiperidine analogues in which the phenethyl group of fentanyl was replaced by several aromatic ring-contained amino acids (or acids) were synthesized to study the biological effect of the substituents on mu and delta opioid receptor interactions. These analogues showed broad (47 nM-76 microM) but selective (up to 17-fold) binding affinities at the mu opioid receptor over the delta opioid receptor, as predicted from the message-address concept.  相似文献   

8.
A structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes.  相似文献   

9.
It is known that under some conditions the administration of opioid agonists will stimulate food intake. However, the lack of receptor selectivity of some of the agonists which produce this effect leaves open the question of which receptor types are actually involved. In the experiments presented here, rats were given intracerebroventricular injections of Dynorphin 1-17 (DYN), [D-ala2MePhe4,-Gly-ol5]enkephalin (DAGO), and [D-ser2, leu5]enkephalin-thr6 (DSLET); these peptides are thought to be selective agonists at kappa, mu and delta opioid receptors, respectively. All three peptides stimulated food intake in non-deprived rats at doses in the 3-10 nmol range; water intake was also increased in some cases. Generally, DYN stimulated feeding at a lower dose than DAGO or DSLET and the magnitude of the effect tended to be greater. On the other hand, DAGO more consistently increased water intake. In some cases, DYN also caused episodes of "barrel-rolling" and postural abnormalities, whereas DAGO had sedative and/or cataleptic effects. These results are interpreted as an involvement of more than one opioid receptor types in the regulation of appetite, possibly with separate opioid systems contributing to food and water intake.  相似文献   

10.
The previously described cyclic mu opioid receptor-selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et) (JOM-6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]-GTPgammaS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]-GTPgammaS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range 0.4-9nM. However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100nM. Lastly, we have identified a peptide, D-Hat-c[D-Cys-Phe-D-Pen]NH2 (Et), with high potency and > 1,000-fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]-GTPgammaS assay.  相似文献   

11.
Characterization of Opioid Receptor Subtypes in Solution   总被引:7,自引:5,他引:2  
Stable opioid receptor binding activity that retains distinct subtype specificities (mu, delta, and kappa) has been obtained in high yields in digitonin extracts of rat brain membranes that had been preincubated with Mg2+ prior to solubilization. The dependence on Mg2+ ions for receptor activity is also expressed in the soluble state, where the presence of Mg2+ leads to high-affinity and high-capacity opioid peptide binding to the delta, mu, and kappa sites (the latter subtype measured by the binding of [3H]dynorphin1-8). Binding of opiate alkaloids to soluble receptor sites is less dependent on Mg2+ than is opioid peptide binding. Soluble opioid binding activity shows the same sensitivity to Na+ ions and guanine nucleotides as the membrane-bound receptor. The ligand-receptor interactions give evidence of strong positive cooperativity, which is interpreted in terms of association-dissociation of receptor subunits on ligand binding in solution. Binding of enkephalin peptides is associated with the large macromolecules present (apparent Stokes radii greater than 60 A), whereas both those and several small species present (less than 60 A) bind opiate alkaloids and dynorphin1-8.  相似文献   

12.
(S)-4-(Carboxamido)phenylalanine (Cpa) is examined as a bioisosteric replacement for the terminal tyrosine (Tyr) residue in a variety of known peptide ligands for the mu, delta and kappa opioid receptors. The Cpa-containing peptides, assayed against cloned human opioid receptors, display comparable binding affinity (Ki), and agonist potency (EC50) to the parent ligands at the three receptors. Cpa analogs of delta selective peptides show an increase in delta selectivity relative to the mu receptor. Cpa is the first example of an amino acid that acts as a surrogate for Tyr in opioid peptide ligands, challenging the long-standing belief that a phenolic residue is required for high affinity binding.  相似文献   

13.
The reaction of human beta-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH+), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human beta-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Tyr-1. Three HPLC fractions were isolated for receptor binding studies with monobiotinylation of Lys-9 (B1 beta and B1X beta; X = C6 spacer arm), Lys-19 (B1 gamma), and a mixture of Lys-24, Lys-28, and Lys-29 derivatives (B1 alpha, BX1 alpha). All derivatives displayed tight binding to avidin, and no dissociation from avidin was detectable over several hours at 0 degrees C for the derivatives (BX1 alpha) tested. IC50 values for binding to mu and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human beta-endorphin (IC50,mu = 1.5 nM, IC50,delta = 1.3 nM). Association with avidin decreased opioid receptor affinities for the C6 spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to mu and delta sites for derivatives biotinylated at the alpha-helical part of the molecule (Lys-19, -24, -28, and -29). Thus, when bound to avidin, the biotinylated human beta-endorphin derivatives with spacer arm (BX1 alpha), substituted near the carboxyl terminal (Lys-24, -28, and -29), displayed mu binding affinities equal to and delta binding affinities only four times lower than underivatized human beta-endorphin. Biotinylated human beta-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human beta-endorphin to cross-link the mu and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.  相似文献   

14.
Choi H  Murray TF  Aldrich JV 《Biopolymers》2003,71(5):552-557
As part of an effort to develop peptide-based affinity labels for opioid receptors, [Leu(5)]enkephalin (LeuEnk) and DTLET (Tyr-D-Thr-Gly-Phe-Leu-Thr), potent agonists for delta receptors, were selected as the parent peptides for further modification. The affinity label derivatives were prepared using standard Fmoc solid-phase peptide synthesis in conjunction with Fmoc-Phe(p-NHAlloc) (Fmoc: 9-flourenylmethoxycarbonyl;) and selective modification of the p-amino group on this residue. The electrophilic isothiocyanate and bromoacetamide groups were introduced into the para position of Phe(4); the corresponding free amine-containing peptides were also prepared for comparison. The pure peptides were evaluated in radioligand binding assays using Chinese hamster ovary (CHO) cells expressing delta and micro opioid receptors. Modification of Phe(4) in LeuEnk and DTLET significantly decreased delta-receptor binding affinity (40 to >2,000-fold). Among the synthesized analogues, [Phe(p-NH(2))(4)]DTLET showed the highest delta-receptor binding affinity (IC(50) = 39 nM) and enhanced selectivity for delta receptors compared to DTLET while other derivatives exhibited much lower delta receptor affinity. The differences in affinities between the two series of analogues and between the derivatives of LeuEnk and N,N-dibenzyl[Leu(5)]Enk reported previously suggest subtle differences in interactions of Phe(4) with delta receptors depending on other modifications in the sequences.  相似文献   

15.
A series of N,N-dialkyl-4-(9-aryltropanylidenemethyl)benzamides was prepared. The lead compounds, 15a and 15c, exhibited extremely high affinity for the delta opioid receptor with excellent selectivity versus the micro opioid receptor. They were full agonists at the delta opioid receptor, as assessed by stimulation of GTPgammaS binding, and displayed antinociceptive activity.  相似文献   

16.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

17.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

18.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

19.
A series of 6-beta-arylamidomorphines was synthesized and biologically evaluated. Various aryl substituents were introduced into the arylamidomorphines to examine substituent structure-activity relationships. Competition binding assays showed that compounds 10a-h bound to the mu opioid receptor with high affinity (0.2-0.6 nM). Functional assays showed that compounds 10a-h acted as full mu opioid receptor agonists. The ED(50) of compound 10e.HCl as an analgesic was 12.6 mg/kg in the tail flick latency test in the rat.  相似文献   

20.
The GABA-ergic and opioid modulation of neurally induced muscle responses was studied in isolated guinea-pig taenia coli and human colonic circular muscle, using identical field stimulation parameters (rectangular pulses of 0.5 ms duration, 9 V x cm(-1) intensity, trains of 3 pulses at 0.5 Hz, repeated every 1/3/5 min). The stimulation-induced contractions were inhibited in both preparations by GABA and baclofen; the IC50 values in human colonic circular muscle were approximately 100 and 31.0 microM, respectively. In guinea-pig taenia coli, the inhibition by 10(-4) M GABA was dose-dependently reversed by 10(-4)-10(-3) M of GABA(B) receptor antagonist CGP 35348; antagonism by phaclofen was less effective in the same concentration range. In human colonic circular muscle, inhibition by 3 x 10(-5) M baclofen was fully reversed by 10(-3) M CGP 35348. With the exception of caecum, the delta 2 opioid receptor agonist deltorphin II was a potent inhibitor in human colonic circular muscle. 10(-8) M Deltorphin caused a 74.4 +/- 9.6% (n = 4) inhibition which was reversed by 10(-6) M of delta receptor selective peptide antagonist BOC-Tyr-Pro-Gly-Phe-Leu-Thr(OtBu). Deltorphin II was ineffective in guinea-pig taenia coli even at 10(-6) M; the same concentration caused an 84.3 +/- 7.9 (n = 4) inhibition in human preparations. It is concluded that: 1) GABA-ergic modulatory mechanisms are present both in human colonic circular muscle and guinea-pig taenia coli; 2) the GABA receptors involved are of type B; and 3) delta opioid receptor-mediated modulation functions only in human colonic circular muscle in regions other than the caecum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号