首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximately 6.9-kb region encompassing the RpII215 gene was sequenced for 24 individuals of the island endemic species Drosophila guanche. The comparative analysis of synonymous polymorphism and divergence in D. guanche and D. subobscura, two species with pronounced differences in population size, allows contrasting the nearly neutral character of synonymous mutations. In D. guanche, unlike in D. subobscura, (1) the ratio of preferred to unpreferred synonymous changes was similar for polymorphic and fixed changes, (2) the numbers of preferred and unpreferred changes, both polymorphic and fixed, could be explained by the mutational process, and (3) the estimated scaled selection coefficient for unpreferred mutations did not differ significantly from zero. Additionally, the comparative analysis revealed that both the ratio of preferred to unpreferred synonymous changes and the frequency spectrum of unpreferred polymorphic mutations differed significantly between species. All these results indicate that a large fraction of synonymous mutations in the RpII215 gene behave as effectively neutral in D. guanche, whereas they are weakly selected in D. subobscura. The reduced efficacy of selection in the insular species constitutes strong evidence of the nearly neutral character of synonymous mutations and, therefore, of the role of weak selection in maintaining codon bias.  相似文献   

2.
J. M. Comeron  M. Aguade 《Genetics》1996,144(3):1053-1062
The Xdh (rosy) region of Drosophila subobscura has been sequenced and compared to the homologous region of D. pseudoobscura and D. melanogaster. Estimates of the numbers of synonymous substitutions per site (Ks) confirm that Xdh has a high synonymous substitution rate. The distributions of both nonsynonymous and synonymous substitutions along the coding region were found to be heterogeneous. Also, no relationship has been detected between Ks estimates and codon usage bias along the gene, in contrast with the generally observed relationship among genes. This heterogeneous distribution of synonymous substitutions along the Xdh gene, which is expression-level independent, could be explained by a differential selection pressure on synonymous sites along the coding region acting on mRNA secondary structure. The synonymous rate in the Xdh coding region is lower in the D. subobscura than in the D. pseudoobscura lineage, whereas the reverse is true for the Adh gene.  相似文献   

3.
The complete coding region of the yellow (y) gene was sequenced in different Drosophila species. In the species of the melanogaster subgroup (D. melanogaster, D. simulans, D. mauritiana, D. yakuba, and D. erecta), this gene is located at the tip of the X chromosome in a region with a strong reduction in recombination rate. In contrast, in D. ananassae (included in the ananassae subgroup of the melanogaster group) and in the obscura group species (D. subobscura, D. madeirensis, D. guanche, and D. pseudoobscura), the y gene is located in regions with normal recombination rates. As predicted by the hitchhiking and background selection models, this change in the recombinational environment affected synonymous divergence in the y-gene-coding region. Estimates of the number of synonymous substitutions per site were much lower between the obscura group species and D. ananassae than between the species of the obscura group and the melanogaster subgroup. In fact, a highly significant increase in the rate of synonymous substitution was detected in all lineages leading to the species of the melanogaster subgroup relative to the D. ananassae lineage. This increase can be explained by a higher fixation rate of mutations from preferred to unpreferred codons (slightly deleterious mutations). The lower codon bias detected in all species of the melanogaster subgroup relative to D. ananassae (or to the obscura group species) would be consistent with this proposal. Therefore, at least in Drosophila, changes in the recombination rate in different lineages might cause deviations of the molecular-clock hypothesis and contribute to the overdispersion of the rate of synonymous substitution. In contrast, the change in the recombinational environment of the y gene has no detectable effect on the rate of amino acid replacement in the Yellow protein.  相似文献   

4.
Llopart A  Aguadé M 《Genetics》2000,155(3):1245-1252
Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be explained by neutral mutational processes. In contrast, preferred mutations segregate at significantly higher frequency than unpreferred mutations, suggesting the action of natural selection. The polymorphism to divergence ratio is different for preferred and unpreferred changes, in agreement with their beneficial and deleterious effects on fitness, respectively. Preferred and unpreferred codons are nonrandomly distributed in the RpII215 gene, leading to a heterogeneous distribution of polymorphic to fixed synonymous differences across this coding region. This intragenic variation of the polymorphism/divergence ratio cannot be explained by different patterns of gene expression, mutation, or recombination rates, and therefore it indicates that selection coefficients for synonymous mutations can vary extensively across a coding region. The application of nucleotide composition stationarity tests in coding and flanking noncoding regions, assumed to behave neutrally, allows the detection of the action of natural selection when stationarity holds in the noncoding region.  相似文献   

5.
A. Munte  M. Aguade    C. Segarra 《Genetics》1997,147(1):165-175
The yellow (y) gene maps near the telomere of the X chromosome in Drosophila melanogaster but not in D. subobscura. Thus the strong reduction in the recombination rate associated with telomeric regions is not expected in D. subobscura. To study the divergence of a gene whose recombination rate differs between two species, the y gene of D. subobscura was sequenced. Sequence comparison between D. melanogaster and D. subobscura revealed several elements conserved in noncoding regions that may correspond to putative cis-acting regulatory sequences. Divergence in the y gene coding region between D. subobscura and D. melanogaster was compared with that found in other genes sequenced in both species. Both, yellow and scute exhibit an unusually high number of synonymous substitutions per site (p(s)). Also for these genes, the extent of codon bias differs between both species, being much higher in D. subobscura than in D. melanogaster. This pattern of divergence is consistent with the hitchhiking and background selection models that predict an increase in the fixation rate of slightly deleterious mutations and a decrease in the rate of fixation of slightly advantageous mutations in regions with low recombination rates such as in the y-sc gene region of D. melanogaster.  相似文献   

6.
The nucleotide sequence of the Xdh region of Drosophila pseudoobscura is presented. The Xdh gene structure and organization are compared with the homologous region in D. melanogaster. This locus is shown to have similar organization in the two species, although an additional intron and three insertion/deletion events are described for the D. pseudoobscura coding region. The encoded proteins are predicted to have very similar charges and hydrophobic/hydrophilic domains even though 11% of the amino acids are different. A gene 5' to Xdh, putative l(3)s12, is suggested from sequence similarity between the species. Synonymous differences at the Xdh locus between the two species are analyzed using a new method described in the preceding paper by Lewontin. This analysis shows that synonymous positions within the Xdh locus are evolving at very different rates, being dependent on level of codon redundancy. A comparison of synonymous divergence between D. melanogaster and D. pseudoobscura in five additional genes reveals variation in the level of synonymous substitution.   相似文献   

7.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

8.
C. Segarra  G. Ribo    M. Aguade 《Genetics》1996,144(1):139-146
Twenty-two markers located on Muller's elements D or E have been mapped by in situ hybridization in six species of the obscura group of Drosophila and in D. melanogaster. The obscura species can be grouped into a Palearctic cluster (D. subobscura, D. madeirensis and D. guanche) and a Nearctic one (D. pseudoobscura, D. persimilis and D. miranda). Eleven of the probes contain known genes: E74, Acp70A, Est5, hsp28/23, hsp83, emc, hsp70, Xdh, Acph-1, Cec and rp49. The remaining probes are recombinant phages isolated from a D. subobscura genomic library. All these markers hybridize to the putative homologous chromosome or chromosomal arm of elements D and E. Thus, these elements have conserved their genic content during species divergence. Chromosomal homologies proposed previously for each element among the species of the same cluster have been compared with the present results. The distribution of markers within each element has changed considerably as inferred from pairwise comparisons of obscura species included in the two different clusters. Only chromosomal segments defined by closely linked markers have been conserved: one such segment has been detected in element D and three in element E between D. subobscura and D. pseudoobscura.  相似文献   

9.
10.
11.
The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift.  相似文献   

12.
13.
14.
Bartolomé C  Maside X  Yi S  Grant AL  Charlesworth B 《Genetics》2005,169(3):1495-1507
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65.  相似文献   

15.
H. Akashi 《Genetics》1995,139(2):1067-1076
Patterns of codon usage and ``silent'''' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'''' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.  相似文献   

16.
Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.  相似文献   

17.
DuMont VB  Fay JC  Calabrese PP  Aquadro CF 《Genetics》2004,167(1):171-185
DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.  相似文献   

18.
M Aguadé 《Genetics》1999,152(2):543-551
Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  相似文献   

19.
The proportion of amino acid substitutions driven by adaptive evolution can potentially be estimated from polymorphism and divergence data by an extension of the McDonald-Kreitman test. We have developed a maximum-likelihood method to do this and have applied our method to several data sets from three Drosophila species: D. melanogaster, D. simulans, and D. yakuba. The estimated number of adaptive substitutions per codon is not uniformly distributed among genes, but follows a leptokurtic distribution. However, the proportion of amino acid substitutions fixed by adaptive evolution seems to be remarkably constant across the genome (i.e., the proportion of amino acid substitutions that are adaptive appears to be the same in fast-evolving and slow-evolving genes; fast-evolving genes have higher numbers of both adaptive and neutral substitutions). Our estimates do not seem to be significantly biased by selection on synonymous codon use or by the assumption of independence among sites. Nevertheless, an accurate estimate is hampered by the existence of slightly deleterious mutations and variations in effective population size. The analysis of several Drosophila data sets suggests that approximately 25% +/- 20% of amino acid substitutions were driven by positive selection in the divergence between D. simulans and D. yakuba.  相似文献   

20.
J M Comeron  M Kreitman  M Aguadé 《Genetics》1999,151(1):239-249
Evolutionary analysis of codon bias in Drosophila indicates that synonymous mutations are not neutral, but rather are subject to weak selection at the translation level. Here we show that the effectiveness of natural selection on synonymous sites is strongly correlated with the rate of recombination, in accord with the nearly neutral hypothesis. This correlation, however, is apparent only in genes encoding short proteins. Long coding regions have both a lower codon bias and higher synonymous substitution rates, suggesting that they are affected less efficiently by selection. Therefore, both the length of the coding region and the recombination rate modulate codon bias. In addition, the data indicate that selection coefficients for synonymous mutations must vary by a minimum of one or two orders of magnitude. Two hypotheses are proposed to explain the relationship among the coding region length, the codon bias, and the synonymous divergence and polymorphism levels across the range of recombination rates in Drosophila. The first hypothesis is that selection coefficients on synonymous mutations are inversely related to the total length of the coding region. The second hypothesis proposes that interference among synonymous mutations reduces the efficacy of selection on these mutations. We investigated this second hypothesis by carrying out forward simulations of weakly selected mutations in model populations. These simulations show that even with realistic recombination rates, this interference, which we call the "small-scale" Hill-Robertson effect, can have a moderately strong influence on codon bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号