首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid exchange activity in developing rat brain   总被引:2,自引:0,他引:2  
Phospholipid exchange activity has been determined in the supernatant fraction of rat brain from birth through to maturity by measuring the protein-catalysed transfer of total and individual 32P-labelled phospholipids from microsomal membranes to mitochondria, and the transfer of [14C]phosphatidylcholine from liposomes to mitochondria. Transfer activity has also been compared in brain and liver supernatant. Overall phospholipid exchange activity in the brain increased only slightly with age. The activity at birth was 75% of the adult value. However, the transfer of individual phospholipids showed markedly different trends during postnatal brain development. The transfer of phosphatidylinositol (PI) and ethanolamine phospholipids increased postnatally to a maximum at 9 days of age, with lowest values in adult brain. Phosphatidylcholine (PC) transfer increased from 9 days to reach maximum values in the mature brain. The transfer of sphingomyelin was highest immediately after birth. PI transfer activity was higher in brain than liver, while PC and ethanolamine phospholipid transfer activity was higher in liver. The heterogeneity of phospholipid exchange proteins in central nervous system tissue is reflected in the developmental changes in exchange activity towards individual phospholipids. The various exchange proteins appear to have separate induction mechanisms. The presence of exchange-protein activity from birth in the rat indicates the functional importance of phospholipid transport during cell acquisition and membrane proliferation. Activity is not primarily associated with membrane formation such as the formation of the myelin sheath, and therefore is more likely to be involved in the process of phospholipid turnover.  相似文献   

2.
Glycerol kinase was found to associate with the hexokinase binding protein. The binding of glycerol kinase has a high specificity as illustrated by the fact that the magnitude of binding was reduced by glycerophosphate and antibodies against the hexokinase binding protein. A possible function of glycerol kinase binding to the mitochondria with respect to metabolic regulation is proposed for the following reasons: (i) Glycerol kinase seems to bind to the same binding protein as hexokinase. (ii) Both kinases were observed to be reversibly bound to the mitochondria in different metabolic situations, i.e., 10% of total cellular activity from both kinases is bound in starved rats whereas no activity of glycerol kinase and 30% of hexokinase become bound in fed rats. (iii) The kinetic properties of the associated glycerol kinase change in an analogous manner to those known for structure-bound hexokinase. (iv) With the binding of glycerol kinase to the mitochondria, it is possible to propose a metabolic pathway for glycerol oxidation to dihydroxyacetone phosphate by a combined action involving the enzyme, glycerol phosphate oxidase, and oxidative phosphorylation.  相似文献   

3.
1. The pattern of NADP-linked malic enzyme activity estimated in the whole brain homogenate did not parallel that found in liver of developing rat. 2. Studies on intracellular distribution of malic enzyme in brain showed that the mitochondrial enzyme increased about three-fold between 10th and 40th day of life. Thereafter, a slow gradual increase to the adult level was observed. 3. The extramitochondrial malic enzyme from brain, like the liver enzyme, increased at the time of weaning, although to a lesser extent. At day 5 the brain malic enzyme was equally distributed between mitochondria and cytosol. 4. During the postnatal development, the contribution of the mitochondrial malic enzyme in the total activity was increasing, reaching the value approx. 80% at day 150 after birth. 5. The increase with age of the malic enzyme specific activity was observed in both synaptosomal and non-synaptosomal mitochondria, the changes in the last fraction being more pronounced. 6. The activity of citrate synthase developed markedly between 10-40 postnatal days, increasing about five-fold, while the specific activity of the enzyme did change neither in the synaptosomal nor in non-synaptosomal mitochondria at this period. 7. We conclude that the changes in malic enzyme activity in the developing rat brain are mainly due both to the increase of mitochondrial protein content and to the increase of specific activity of the mitochondrial malic enzyme.  相似文献   

4.
Interactions between intramitochondrial ATP-generating, ADP-requiring processes and ATP-requiring, ADP-generating phosphorylation of glucose by mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been investigated using well-coupled mitochondria isolated from rat brain. ADP generated by mitochondrially bound hexokinase was more effective at stimulating respiration than was ADP generated by hexokinase dissociated from the mitochondria, and pyruvate kinase was less effective as a scavenger of ADP generated by the mitochondrially bound hexokinase than was the case with ADP generated by the dissociated enzyme. These results indicate that ADP generated by the mitochondrially bound enzyme is at least partially sequestered and directed toward the mitochondrial oxidative phosphorylation apparatus. Under the conditions of these experiments, the maximum rate of ATP production by oxidative phosphorylation was approximately 10-fold greater than the maximum rate of ATP generation by the adenylate kinase reaction. Moreover, during periods of active oxidative phosphorylation, adenylate kinase made no detectable contribution to ATP production. Thus, adenylate kinase does not represent a major source of ATP for hexokinase bound to actively phosphorylating brain mitochondria. With adenylate kinase as the sole source of ATP, a steady state was attained in which ATP formation was balanced by utilization in the hexokinase reaction. In contrast, when oxidative phosphorylation was the source of ATP, a steady state rate of Glc phosphorylation was attained, but it was equivalent to only about 40-50% of the rate of ATP production and thus there was a continued net increase in ATP concentration in the system. Rates of Glc phosphorylation with ATP generated by oxidative phosphorylation exceeded those seen with equivalent levels of exogenously added ATP. Moreover, at total ATP concentrations greater than approximately 0.2 mM, hexokinase bound to actively phosphorylating mitochondria was unresponsive to continued slow increases in ATP levels; acute increase in ATP (by addition of exogenous nucleotide) did, however, result in increased hexokinase activity. The relative insensitivity of mitochondrially bound hexokinase to extramitochondrial ATP suggested dependence on an intramitochondrial pool (or pools) of ATP during active oxidative phosphorylation. Two intramitochondrial compartments of ATP were identified based on their selective release by inhibitors of electron transport or oxidative phosphorylation. These compartments were distinguished by their sensitivity to inhibitors and the kinetics with which they were filled with ATP generated by oxidative phosphorylation. Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Glycerol metabolism in the neonatal rat   总被引:8,自引:7,他引:1       下载免费PDF全文
1. The possible role of glycerol as a precursor in neonatal gluconeogenesis in the rat was investigated by recording the activities of glycerol kinase and l-glycerol 3-phosphate dehydrogenase in the liver, kidney and other tissues around birth and during the neonatal period. 2. Blood glycerol concentrations in the neonatal rat are high. 3. There is a marked increase after birth in the ability of both liver and kidney slices to convert glycerol into glucose plus glycogen that correlates with the increase in glycerol kinase activity. 4. High hepatic and renal l-glycerol 3-phosphate dehydrogenase activities are also found in the neonatal period. 5. The marked capacity for neonatal gluconeogenesis from glycerol thus demonstrated and the role of glycerol kinase in its control are discussed.  相似文献   

6.
The activity of 5-nucleotidase (EC 3.1.3.5) and guanylate kinase (EC 2.7.4.8) in the mitochondria and supernatant of the brain and liver was determined in experiments on Wistar male rats 1, 3, 6, 24 and 48 h after the single total irradiation by gamma-quanta in a dose of 30 Gy. It is established that the activity of 5-nucleotidase in the liver endures phase changes with the predominance of the enzyme activation; in the brain it is higher during the whole period of investigation. The guanylate kinase activity lowers in the both fractions of the organs under study during the whole period of the experiment.  相似文献   

7.
Postnatal Development of Thiamine Metabolism in Rat Brain   总被引:1,自引:0,他引:1  
The activities of thiamine diphosphatase (TDPase), thiamine triphosphatase (TTPase), and thiamine pyrophosphokinase and the contents of thiamine and its phosphate esters were determined in rat brain cortex, cerebellum, and liver from birth to adulthood. Microsomal TTPase activity in the cerebral cortex and cerebellum increased from birth to 3 weeks, whereas that in the liver did not change during postnatal development. Microsomal TDPase activity in the cerebral cortex showed a transient increase at 1-2 weeks, but that in the cerebellum did not change during development. In contrast to the activity of the brain enzyme, that of liver microsomal TDPase increased stepwise after birth. Thiamine pyrophosphokinase activity in the cerebellum increased from birth to 3 weeks and then decreased, whereas that in the cerebral cortex and liver showed less change during development. TDP and thiamine monophosphate (TMP) levels increased after birth and plateaued at 3 weeks whereas TTP and thiamine levels showed little change during development in the cerebral cortex and cerebellum. The contents of thiamine and its phosphate esters in the liver showed more complicated changes during development. It is concluded that thiamine metabolism in the brain changes during postnatal development in a different way from that in the liver and that the development of thiamine metabolism differs among brain regions.  相似文献   

8.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

9.
Development of mitochondrial energy metabolism in rat brain   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The development of pyruvate dehydrogenase and citrate synthase activity in rat brain mitochondria was studied. Whereas the citrate synthase activity starts to increase at about 8 days after birth, that of pyruvate dehydrogenase starts to increase at about 15 days. Measurements of the active proportion of pyruvate dehydrogenase during development were also made. 2. The ability of rat brain mitochondria to oxidize pyruvate follows a similar developmental pattern to that of the pyruvate dehydrogenase. However, the ability to oxidize 3-hydroxybutyrate shows a different developmental pattern (maximal at 20 days and declining by half in the adult), which is compatible with the developmental pattern of the ketone-body-utilizing enzymes. 3. The developmental pattern of both the soluble and the mitochondrially bound hexokinase of rat brain was studied. The total brain hexokinase activity increases markedly at about 15 days, which is mainly due to an increase in activity of the mitochondrially bound form, and reaches the adult situation (approx. 70% being mitochondrial) at about 30 days after birth. 4. The release of the mitochondrially bound hexokinase under different conditions by glucose 6-phosphate was studied. There was insignificant release of the bound hexokinase in media containing high KCl concentrations by glucose 6-phosphate, but in sucrose media half-maximal release of hexokinase was achieved by 70μm-glucose 6-phosphate 5. The production of glucose 6-phosphate by brain mitochondria in the presence of Mg2++glucose was demonstrated, together with the inhibition of this by atractyloside. 6. The results are discussed with respect to the possible biological significance of the similar developmental patterns of pyruvate dehydrogenase and the mitochondrially bound kinases, particularly hexokinase, in the brain. It is suggested that this association may be a mechanism for maintaining an efficient and active aerobic glycolysis which is necessary for full neural expression.  相似文献   

10.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

11.
Summary The subcellular distribution and substrate kinetics of soluble and particulate-associated bovine adrenal glycerol kinase have been investigated. Whole adrenal, adrenal cortex and adrenal medulla were examined for distribution of glycerol kinase between soluble and particulate fractions. No major differences in distribution were noted between these tissues; of the total homogenate activity, 0–20% sedimented with the nuclear fraction, 24–36% sedimented with the post-nuclear fraction and 62–69% remained soluble. Steadystate kinetic parameters of glycerol kinase activity were compared in the soluble and mitochondrial fractions. The Km for glycerol in the soluble fraction was 6.3 ± 0.1 M and in the mitochondrial fraction was 4.0 = 0.3 M. The Km for ATP in soluble fraction was 12.8 1.5 and in the mitochondrial fraction was 5.3 ± 1.6. Release of adrenal glycerol kinase from the mitochondria) fraction was investigated using inorganic phosphate, ATP and glycerol 3-phosphate. Of these compounds, only ATP and glycerol 3-phosphate were effective in releasing particulate-associated glycerol kinase. Inorganic phosphate had no effect upon release. Particulate-associated glycerol kinase activity of the mitochondrial fraction was stimulated by addition of succinate and ADP and was inhibited by addition of atractyloside. The data presented here indicate that bound glycerol kinase found within the mitochondrial fraction is kinetically distinct from soluble glycerol kinase and binding to mitochondria is responsive to substrate and product levels within the physiological range.  相似文献   

12.
Mitochondrial-bound glycerol kinase in rat brain was examined with reference to factors involved in the binding and significance of the binding in relation to ATP metabolism inside the mitochondria. The mitochondrial-bound glycerol kinase was solubilized with glycerol 3-phosphate or ADP, and the solubilized enzyme was rebound to mitochondria by addition of divalent cations. The rebinding was decreased by the presence of glycerol 3-phosphate, while was increased by glucose 6-phosphate. Positive correlation was found between the formation of glycerol 3-phosphate by mitochondrial-bound glycerol kinase and ATP content in mitochondria in experiments using various concentrations of succinate and ADP. On the other hand, glycerol 3-phosphate formation was inhibited by addition of inhibitors for mitochondria functions, such as oligomycin, dinitrophenol, cyanide, and atractyloside. Furthermore, formation of dihydroxyacetone phosphate from glycerol was proved, indicating the involvement of glycerol kinase in glycerol phosphate shuttle in combination with glycerol phosphate dehydrogenase. These findings are discussed in comparison with those of mitochondrial-bound hexokinase.  相似文献   

13.
The patterns of cholesterol content in chick brain and liver were studied during embryonic development and compared with the variations in the specific activities of mevalonate-activating enzymes during the same period. Total cholesterol content in both embryonic chick brain and liver increased during incubation. The relative percentage of free cholesterol was always maintained over 85% in brain, while in liver this percentage decreased to less than 10% during the later days of incubation. A straight parallelism was observed between free cholesterol and pyrophosphomevalonate decarboxylase activity in the embryonic brain. On the other hand, the hepatic decarboxylase exhibited a lower specific activity than in brain and did not show significant variations throughout the same period of incubation. Changes in brain pyrophosphomevalonate decarboxylase activity were more pronounced than those observed in both mevalonate kinase and phosphomevalonate kinase activities, in spite of that the specific activity of decarboxylase was the lowest of the three mevalonate-activating enzymes, suggesting that this reaction is one rate-limiting step for cholesterogenesis during myelination.  相似文献   

14.
Brain and liver extracts of rats at different stages after birth were examined for cytochrome c/dATP-dependent caspase (DEVDase)-activation (mitochondria pathway) in vitro. The caspase-activating activity in the brain extracts rapidly decreased after birth, reaching approximately 50 and 5%, at 1 and 2 weeks, respectively, of that in a 3-days- newborn sample, and essentially no caspase-activation was detected in the adult rat brain extracts. Such a dramatic change was not detected in the liver samples, suggesting that the observed abrogation of the cytochrome c-dependent mitochondria pathway after birth is a brain-specific event. In order to determine the factor(s) lacking in adult brain, we separately measured Apaf-1, procaspase 9, and pro-DEVDase activities using a supplementation assay. In adult brain, Apaf-1 activity was scarcely detected, while the tissue retained low but significant amounts of procaspase 9 (16% of that in the fetal tissue) and a pro-DEVDase (3.4%). In contrast, adult liver extracts retained relatively high levels of all of these factors. Immunoblot analyses clearly indicated that the expression of Apaf-1 and procaspase 3 is markedly suppressed within 4 weeks after birth in brain tissue while they are even expressed in adult liver. Considering these results together, we propose that, in the brain, the cytochrome c-dependent mitochondria pathway, which is essential for the programmed cell death during normal morphogenesis, is abrogated within 2-4 weeks after birth, whereas the pathway is still active in other adult tissues such as liver.  相似文献   

15.
The kinetics of glycerol uptake by the perfused rat liver were determined according to a model which includes membrane transport, intracellular phosphorylation and competitive inhibition of glycerol phosphorylation by L-glycerol 3-phosphate. The membrane transport obeys first-order kinetics at concentrations below 10 mM in the affluent medium. The K-m of the glycerol phosphorylation was 10 muM and the K-i of the L-glycerol 3-phosphate inhibition was 50 muM. The maximum activity (V) was 3.70 mumoles/min per g liver wet wt. These results are similar to in vitro kinetics of the glycerol kinase, except that K-i was found to be somewhat lower in the intact organ. At low glycerol concentrations, a steep concentration gradient exists across the liver cell membrane. The increase in the lactate to pyruvate concentration ratio during glycerol metabolism is related to the actual concentration of L-glycerol 3-phosphate, not to the rate of glycerol uptake.  相似文献   

16.
Starvation of rats for 48 h increased the activity of PDH (pyruvate dehydrogenase) kinase 2.2-fold in extracts of liver mitochondria, 2.9-fold in PDH complex partially purified therefrom by fractional precipitation, and 5-fold in PDH complex partially purified by gel filtration on Sephacryl S-300. A protein fraction was separated from PDH complex in extracts of rat liver mitochondria by gel filtration or fractional precipitation, which increased the activity of PDH kinase in rat liver and pig heart PDH complexes. The activity of this protein fraction was increased approx. 2.5-fold by 48 h starvation of rats. With highly purified pig heart PDH complex it was shown that the protein fraction increased the Vmax. of the PDH kinase reaction 35-fold (fraction from fed rats) or 82-fold (fraction from starved rats); starvation had no effect on the concentration of protein fraction required to give 0.5 Vmax. Evidence is given that the increase in PDH kinase activity effected in extracts of liver mitochondria by starvation is due to increased activity of kinase activator protein, which is tightly bound by rat liver PDH complex and not removed by a single gel filtration. With pig heart PDH complex, increased PDH kinase activity was retained after gel filtration of an admixture with kinase activator protein from starved rats, but was restored to the control value by a second gel filtration; the alterations in PDH kinase activity were associated with obvious changes in protein bands in SDS gels.  相似文献   

17.
1. The development of the total rat brain creatine kinase was studied in brain homogenates. Until approx. 14-15 days after birth, the activity remains less than one-third that of the adult activity (207+/-6 units/g wet wt. s.d.; n=3). Over the next 10 days the activity increases markedly to the adult value and thereafter remains essentially constant. 2. In the adult brain, approx. 5% (11.9+/-2.2 units/g wet wt. s.d.; n=5) of the total creatine kinase is associated with the mitochondrial fraction. This creatine kinase could not be solubilized by sodium acetate solutions of up to 0.8m concentration, whereas 66% of the hexokinase associated with brain mitochondria was released under these conditions. 3. Rat brain mitochondria incubated in the presence of various concentrations of creatine (1, 5 and 10mm) and ADP (100mum) synthesized phosphocreatine at rates of approx. 4.5, 11 and 17.5nmol/min per mg of mitochondrial protein. Atractyloside (50mum) or oligomycin (1.5mug/mg of mitochondrial protein) completely inhibited the synthesis of phosphocreatine. 4. The apparent K(m) and V(max.) values of the mitochondrially bound rat brain creatine kinase were determined in both directions. The V(max.) in the direction of phosphocreatine synthesis is 237nmol/min per mg of mitochondrial protein, with an apparent K(m) for creatine of 1.67mm and for MgATP(2-) of 0.1mm, and in the reverse direction V(max.) is 489nmol/min per mg of mitochondrial protein, with an apparent K(m) for phosphocreatine of 0.4mm and for MgADP(-) of 27mum. 5. The results are discussed with reference to the role that the mitochondrially bound creatine kinase may play in the development of brain energy metabolism.  相似文献   

18.
The activities of two phosphate-dependent glutaminase reactions characteristic of adult rat liver and kidney were determined in these organs from 2(1/2) days before to 7 days after birth and compared with the activities in the adult tissues. In the kidney, before and after birth, only the kidney type of activity was detected, and it increased in concentration in parallel with the steady growth of that organ throughout the period examined. In the liver, however, the kidney type of activity was the only one present 2(1/2) days before birth, and its concentration decreased to barely significant values by the end of the first week after birth. In contrast, the liver type of activity appeared only just before birth and increased to 60% of adult values over the next 4 days. There was no obvious relation between these changes in glutaminase type and changes in liver weight, protein content and total cell number that occurred during this time. But there was a very close correlation between the fall in kidney-type activity and the estimated fall in haematopoietic-cell number in liver.  相似文献   

19.
1. Dramatic interdependent changes in the intracellular concentrations of copper (Cu), zinc (Zn) and metallothionein (MT) in the liver of bank voles during the first 30 days of their life were observed.2. The post-mitochondrial Cu, Zn and MT (ZnMT) abruptly decreased between 1 and 3 days following birth but the nuclear MT (CuMT) and Cu increased at the same time, suggesting that Cu displaced Zn already bound to MT in the cytoplasm and subsequently the complex CuMT was translocated to the nuclei.3. The nuclear Cu concentration reached the highest level (62–71% of the total tissue Cu) in the period from day 3 to day 20 post-partum, just prior to and during a rapidly growing liver.4. The data indicate that MT and Cu may be involved in the hepatocyte proliferation.  相似文献   

20.
Developmental changes in rat hepatic casein kinases 1 and 2   总被引:2,自引:0,他引:2  
Cytosolic histone kinase and casein kinase activities varied considerably in the late fetal and postnatal periods of liver development. Both activities showed a maximum at day 21 of gestation and decreased at birth to values close to those of adult rats. The changes in total casein kinase activity were due to variations of casein kinase 1 and casein kinase 2. Similarly the activities of both the cyclic-AMP-dependent protein (histone) kinase and the cyclic-AMP-independent histone kinase varied during development. Besides the changes in total activity, the affinity of casein kinases 1 and 2 for casein also varied in fetal and postnatal development. The Km values of casein kinase 2 increased from day 18, reached a maximum at day 20 of gestation and then started to decrease until one day after birth. In contrast the Km values of casein kinase 1 decreased from day 18, reached its lowest value at day 21 of gestation and attained values similar to those in the adult at the day of birth. Changes in this parameter were also observed when insulin (3 IU/kg) was administered by intraperitoneal injection to one-day-old rats. The Km values of casein kinase 1 decreased while those of casein kinase 2 increased after administration of this hormone. On the other hand, the Km values for ATP of casein kinases 1 and 2 as well as their apparent molecular masses and sensitivity to heparin and GTP did not significantly change during ontogeny of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号