首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme''s tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.  相似文献   

2.
Pyridoxal‐5′‐phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP‐dependent enzymes account for ~1.5% of most prokaryotic genomes and are estimated to be involved in ~4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP‐dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram‐positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP‐dependent enzyme fold and structure‐guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.  相似文献   

3.
4.
5.
Mei Zhang 《Biopolymers》2010,93(2):121-131
Recently, we isolated and purified a neutral polysaccharide (PGN) from edible fungus Pleurotus geestanus. Its structure was characterized by a range of physical–chemical methods, including high performance anion exchange chromatography, uronic acid, and protein analyses, size exclusion chromatography with ultraviolet, refractive index and light scattering detectors, and nuclear magnetic resonance. Our results revealed that PGN is a novel β‐(1→3)‐D ‐glucan with glucose attached to every other sugar residues at Position 6 in the backbone. It has a degree of branching of 1/2. Such structure is different from typical β‐(1→3)‐D ‐glucans schizophyllan and lentinan in which DB is 1/3 and 2/5, respectively. Rheological study showed a very interesting melting behavior of PGN in water solution: heating PGN in water leads to two transitions, in the range of 8–12.5°C and 25–60°C, respectively. The melting behavior and conformational changes were characterized by rheometry, micro‐differential scan calorimetry, atomic force microscopy, static and dynamic light scattering at different temperatures. The first heating‐induced transition corresponds to the disintegration of polymer bundles into small helical clusters, resembling the heating‐induced dissociation of SPG in water at 7°C; the second one might correspond to the dissociation of helical strands to individual chains. The ability of PGN to undergo a conformation/viscosity transition in water upon heating is very valuable to immobilize cells or enzymes or therapeutic DNA/RNA, which makes PGN a potentially useful biomaterial. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 121–131, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We report herein the crystal structure of Escherichia coli RimK at a resolution of 2.85 Å, an enzyme that catalyzes the post‐translational addition of up to 15 C‐terminal glutamate residues to ribosomal protein S6. The structure belongs to the ATP‐grasp superfamily and is organized as a tetramer, consistent with gel filtration analysis. Each subunit consists of three distinct structural domains and the active site is located in the cleft between these domains. The catalytic reaction appears to occur at the junction between the three domains as ATP binds between the B and C domains, and other substrates bind nearby.Proteins 2013; 81:1847–1854. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
The crystal structure of the GH78 family α‐rhamnosidase from Klebsiella oxytoca (KoRha) has been determined at 2.7 Å resolution with rhamnose bound in the active site of the catalytic domain. Curiously, the putative catalytic acid, Asp 222, is preceded by an unusual non‐proline cis‐peptide bond which helps to project the carboxyl group into the active centre. This KoRha homodimeric structure is significantly smaller than those of the other previously determined GH78 structures. Nevertheless, the enzyme displays α‐rhamnosidase activity when assayed in vitro, suggesting that the additional structural domains found in the related enzymes are dispensible for function. Proteins 2015; 83:1742–1749. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

10.
1‐Phenyl‐5‐p‐tolyl‐1H‐1, 2, 3‐triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA–HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.  相似文献   

11.
Phafin2 is a phosphatidylinositol 3‐phosphate (PtdIns(3)P) binding protein involved in the regulation of endosomal cargo trafficking and lysosomal induction of autophagy. Binding of Phafin2 to PtdIns(3)P is mediated by both its PH and FYVE domains. However, there are no studies on the structural basis, conformational stability, and lipid interactions of Phafin2 to better understand how this protein participates in signaling at the surface of endomembrane compartments. Here, we show that human Phafin2 is a moderately elongated monomer of ~28 kDa with an intensity‐average hydrodynamic diameter of ~7 nm. Circular dichroism (CD) analysis indicates that Phafin2 exhibits an α/β structure and predicts ~40% random coil content in the protein. Heteronuclear NMR data indicates that a unique conformation of Phafin2 is present in solution and dispersion of resonances suggests that the protein exhibits random coiled regions, in agreement with the CD data. Phafin2 is stable, displaying a melting temperature of 48.4°C. The folding‐unfolding curves, obtained using urea‐ and guanidine hydrochloride‐mediated denaturation, indicate that Phafin2 undergoes a two‐state native‐to‐denatured transition. Analysis of these transitions shows that the free energy change for urea‐ and guanidine hydrochloride‐induced Phafin2 denaturation in water is ~4 kcal mol?1. PtdIns(3)P binding to Phafin2 occurs with high affinity, triggering minor conformational changes in the protein. Taken together, these studies represent a platform for establishing the structural basis of Phafin2 molecular interactions and the role of the two potentially redundant PtdIns(3)P‐binding domains of the protein in endomembrane compartments.  相似文献   

12.
Widely spread in Gram‐negative bacteria, the type VI secretion system (T6SS) secretes many effector‐immunity protein pairs to help the bacteria compete against other prokaryotic rivals, and infect their eukaryotic hosts. Tle5 and Tle5B are two phospholipase effector protein secreted by T6SS of Pseudomonas aeruginosa. They can facilitate the bacterial internalization process into human epithelial cells by interacting with Akt protein of the PI3K‐Akt signal pathway. Tli5 and PA5086‐5088 are cognate immunity proteins of Tle5 and Tle5B, respectively. They can interact with their cognate effector proteins to suppress their virulence. Here, we report the crystal structure of Tli5 at 2.8Å resolution and successfully fit it into the Small angle X‐ray scattering (SAXS) model of the complete Tle5–Tli5 complex. We identified two important motifs in Tli5 through sequence and structural analysis. One is a conserved loop‐β‐hairpin motif that exists in the Tle5 immunity homologs, the other is a long and sharp α‐α motif that directly interacts with Tle5 according to SAXS data. We also distinguished the structural features of Tle5 and Tle5B family immunity proteins. Together, our work provided insights into a novel inhibition mechanism that may enhance our understanding of phospholipase D family proteins.  相似文献   

13.
A simple, green, and direct three‐component condensation of acetophenone, aromatic aldehydes with 3‐oxo‐N‐phenylbutanamide (acetoacetanilide) to generate some novel (1S,6R)/(1R,6S)‐2‐oxo‐N,4,6‐triarylcyclohex‐3‐enecarboxamide derivatives was carried out over K2CO3 (10 mol%) with high efficiency in water/ethanol as green solvent at room temperature. This protocol proceeded via Claisen–Schmidt condensation and Michael addition. The present methodology offers several advantages, such as short reaction time, high yield, more readily available and inexpensive materials, more environmentally friendly, no need for column chromatography, simple work‐up procedure, and the absence of volatile and hazardous organic solvents.  相似文献   

14.
The post‐translational processing of human α1‐antichymotrypsin (AACT) in Bright Yellow‐2 (BY‐2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse‐chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non‐glycosylated form, in contrast with secreted variants undergoing multiple post‐translational modifications during their transit through the secretory pathway. All secreted forms of AACT were N‐glycosylated, with the presence of complex glycans as observed naturally on human AACT. Proteolytic trimming was also observed for all secreted variants, both during their intracellular transit and after their secretion in the culture medium. Overall, the targeting of human AACT to different compartments of BY‐2 tobacco cells led to the production of two protein products: (i) a stable, non‐glycosylated protein accumulated in the nucleus; and (ii) a heterogeneous mixture of secreted variants resulting from post‐translational N‐glycosylation and proteolytic processing. Overall, these data suggest that AACT is sensitive to resident proteases in the ER, the Golgi and/or the apoplast, and that the production of intact AACT in the plant secretory pathway will require innovative approaches to protect its structural integrity in vivo. Studies are now needed to assess the activity of the different AACT variants, and to identify the molecular determinants for the nuclear localization of AACT expressed in the cytosol.  相似文献   

15.
A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine‐based prodrugs to their corresponding cytotoxic drugs. When fused to an anti‐tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2‐fluoro‐2′‐deoxyadenosine (F‐dAdo) to the cytotoxic drug, 2‐fluoroadenine (F‐Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine‐based prodrugs as substrates. To gain insight into the interaction of hDM with F‐dAdo, we have determined the crystal structures of hDM with F‐dAdo and F‐Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F‐dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild‐type enzyme, can utilize F‐dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine‐based prodrugs, such as F‐dAdo by mutants of human purine nucleoside phosphorylase.  相似文献   

16.
A number of years ago we reported a two‐step inactivation mechanism for α‐amylase (enzyme) on the basis of theoretical and experimental studies in aqueous solutions. In the first step the metal (Ca2+) ion dissociates reversibly from the enzyme followed by an irreversible thermal inactivation of the apoenzyme. In this study we report inactivation of the enzyme in the presence of ethanol–water solutions. We noticed that as the concentration of ethanol in the aqueous solution is increased, the thermal inactivation of the enzyme is suppressed with almost no inactivation (in 1 h, 30°C) when 50% alcohol is present in the solution. These results are explained by the two‐step inactivation model. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1271–1275, 2016  相似文献   

17.
18.
We report on the synthesis, activity testing, docking, and quantum mechanical scoring of novel imidazo[1,2‐c]pyrimidin‐5(6H)‐one scaffold for cyclin‐dependent kinase 2 (CDK2) inhibition. A series of 26 compounds substituted with aromatic moieties at position 8 has been tested in in vitro enzyme assays and shown to inhibit CDK2. 2D structure‐activity relationships have ascertained that small substituents at position 8 (up to the size of naphtyl or methoxyphenyl) generally lead to single‐digit micromolar IC50 values, whereas bigger substituents (substituted biphenyls) decreased the compounds' activities. The binding modes of the compounds obtained using Glide docking have exhibited up to 2 hinge‐region hydrogen bonds to CDK2 and differed in the orientation of the inhibitor core and the placement of the 8‐substituents. Semiempirical quantum mechanics‐based scoring identified probable favourable binding modes, which will serve for future structure‐based design and synthetic optimization of substituents of the heterocyclic core. In summary, we have identified a novel core for CDK2 inhibition and will explore it further to increase the potencies of the compounds and also monitor selectivities against other protein kinases.  相似文献   

19.
OXA‐51 is a class D β‐lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA‐51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high‐resolution structures of apo OXA‐51 and OXA‐51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl‐intermediate. The structure shows that acyl‐doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA‐24/40 (doripenem) and OXA‐23 (meropenem). In the OXA‐51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA‐51. Similarly, in the OXA‐51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA‐51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA‐51 and OXA‐51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA‐51 variants.  相似文献   

20.
The Mus81‐Eme1 complex is a structure‐selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross‐links, replication fork collapse, or double‐strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81‐Eme1, we determined crystal structures of human Mus81‐Eme1 bound to various flap DNA substrates. Mus81‐Eme1 undergoes gross substrate‐induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre‐ and post‐nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post‐nick DNA. These features are crucial for comprehensive protein‐DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81‐Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81‐Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号