首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cystathionine β‐synthase (CBS) catalyzes the formation of l ‐cystathionine from l ‐serine and l ‐homocysteine. The resulting l ‐cystathionine is decomposed into l ‐cysteine, ammonia, and α‐ketobutylic acid by cystathionine γ‐lyase (CGL). This reverse transsulfuration pathway, which is catalyzed by both enzymes, mainly occurs in eukaryotic cells. The eukaryotic CBS and CGL have recently been recognized as major physiological enzymes for the generation of hydrogen sulfide (H2S). In some bacteria, including the plant‐derived lactic acid bacterium Lactobacillus plantarum, the CBS‐ and CGL‐encoding genes form a cluster in their genomes. Inactivation of these enzymes has been reported to suppress H2S production in bacteria; interestingly, it has been shown that H2S suppression increases their susceptibility to various antibiotics. In the present study, we characterized the enzymatic properties of the L. plantarum CBS, whose amino acid sequence displays a similarity with those of O‐acetyl‐l ‐serine sulfhydrylase (OASS) that catalyzes the generation of l ‐cysteine from O‐acetyl‐l ‐serine (l ‐OAS) and H2S. The L. plantarum CBS shows l ‐OAS‐ and l ‐cysteine‐dependent CBS activities together with OASS activity. Especially, it catalyzes the formation of H2S in the presence of l ‐cysteine and l ‐homocysteine, together with the formation of l ‐cystathionine. The high affinity toward l ‐cysteine as a first substrate and tendency to use l ‐homocysteine as a second substrate might be associated with its enzymatic ability to generate H2S. Crystallographic and mutational analyses of CBS indicate that the Ala70 and Glu223 residues at the substrate binding pocket are important for the H2S‐generating activity.  相似文献   

3.
Kedarcidin, produced by Streptoalloteichus sp. ATCC 53650, is a fascinating chromoprotein of 114 amino acid residues that displays both antibiotic and anticancer activity. The chromophore responsible for its chemotherapeutic activity is an ansa‐bridged enediyne with two attached sugars, l ‐mycarose, and l ‐kedarosamine. The biosynthesis of l ‐kedarosamine, a highly unusual trideoxysugar, is beginning to be revealed through bioinformatics approaches. One of the enzymes putatively involved in the production of this carbohydrate is referred to as KedS8. It has been proposed that KedS8 is an N‐methyltransferase that utilizes S‐adenosylmethionine as the methyl donor and a dTDP‐linked C‐4′ amino sugar as the substrate. Here we describe the three‐dimensional architecture of KedS8 in complex with S‐adenosylhomocysteine. The structure was solved to 2.0 Å resolution and refined to an overall R‐factor of 17.1%. Unlike that observed for other sugar N‐methyltransferases, KedS8 adopts a novel tetrameric quaternary structure due to the swapping of β‐strands at the N‐termini of its subunits. The structure presented here represents the first example of an N‐methyltransferase that functions on C‐4′ rather than C‐3′ amino sugars.  相似文献   

4.
The growing demand of pharmaceutical‐grade plasmid DNA (pDNA) suitable for biotherapeutic applications fostered the development of new purification strategies. The surface plasmon resonance technique was employed for a fast binding screening of l ‐histidine and its derivatives, 1‐benzyl‐l ‐histidine and 1‐methyl‐l ‐histidine, as potential ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70, and 14 kbp). The binding analysis was performed with different isoforms of each plasmid (supercoiled, open circular, and linear) separately. The results revealed that the overall affinity of plasmids to l ‐histidine and its derivatives was high (KD > 10−8 M), and the highest affinity was found for human papillomavirus 16 E6/E7 (KD = 1.1 × 10−10 M and KD = 3.34 × 10−10 M for open circular and linear plasmid isoforms, respectively). l ‐Histidine and 1‐benzyl‐l ‐histidine were immobilized on monolithic matrices. Chromatographic studies of l ‐histidine and 1‐benzyl‐l ‐histidine monoliths were also performed with the aforementioned samples. In general, the supercoiled isoform had strong interactions with both supports. The separation of plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in the eluent, in both supports, but a lower salt concentration was required in the 1‐benzyl‐l ‐histidine monolith because of stronger interactions promoted with pDNA. The efficiency of plasmid isoforms separation remained unchanged with flow rate variations. The binding capacity for pDNA achieved with the l ‐histidine monolith was 29‐fold higher than that obtained with conventional l ‐histidine agarose. Overall, the combination of either l ‐histidine or its derivatives with monolithic supports can be a promising strategy to purify the supercoiled isoform from different plasmids with suitable purity degree for pharmaceutical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Staphylococcus aureus is a Gram‐positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO‐resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l ‐lactate and peptides promotes S. aureus growth at moderate NO‐levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate‐quinone and l ‐lactate‐quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO‐stress for the combined utilization of peptides and l ‐lactate. We address the specific contributions of Lqo‐mediated l ‐lactate utilization and Mqo‐dependent amino acid consumption during NO‐stress. We show that Lqo conversion of l ‐lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate‐binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family.  相似文献   

6.
Short alphahelical peptide sequences were stabilized through Glaser‐Hay couplings of propargylated l ‐ and/or d ‐serine residues at positions i and i+7. NMR analysis confirmed a full stabilization of the helical structure when a d ‐Ser (i), l ‐Ser (i+7) combination was applied. In case two l ‐Ser residues were involved in the cyclization, the helical conformation is disrupted outside the peptide's macrocycle.  相似文献   

7.
d ‐Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl‐tRNA synthetases (aaRSs), and this strategy might be applicable to d ‐amino acids. Several aaRSs can aminoacylate their tRNA with a d ‐amino acid; of these, tyrosyl‐tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its d ‐Tyr binding further, relative to l ‐Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl‐adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain l ‐Tyr/d ‐Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge‐altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards d ‐Tyr; one of these has an inverted stereospecificity, with a large preference for d ‐Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled. Proteins 2016; 84:240–253. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3‐deoxy‐d ‐arabino‐heptulosonate 7‐phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l ‐Trp, l ‐Phe, and l ‐Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l ‐Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor‐binding cavity was substituted to Gly, altered inhibitor specificity from l ‐Phe to l ‐Tyr. Comparison of the crystal structures of both unbound and Tyr‐bound forms and the small angle X‐ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.  相似文献   

9.
The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare‐associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram‐negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine‐containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two‐component system (TCS) directly activates 4‐amino‐4‐deoxy‐l ‐arabinose (l ‐Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l ‐Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrABEcl TCS. Instead, PhoPEcl binds to the arnBEcl promoter to induce l ‐Ara4N biosynthesis and PmrAB‐independent addition to the lipid A disaccharolipid. Therefore, PhoPQEcl contributes to regulation of CAMP heteroresistance in some ECC clusters.  相似文献   

10.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

11.
Latrophilin-1 (Lat-1), a target receptor for alpha-Latrotoxin, is a putative G protein-coupled receptor implicated in synaptic function. The extracellular portion of Lat-1 contains a rhamnose binding lectin (RBL)-like domain of unknown structure. RBL domains, first isolated from the eggs of marine species, are also found in the ectodomains of other metazoan transmembrane proteins, including a recently discovered coreceptor of the neuronal axon guidance molecule SLT-1/Slit. Here, we describe a structure of this domain from the mouse Lat-1. RBL adopts a unique alpha/beta fold with long structured loops important for monosaccharide recognition, as shown in the structure of a complex with L-rhamnose. Sequence alignments and mutagenesis show that residues important for carbohydrate binding are often absent in other receptor-attached examples of RBL, including the SLT-1/Slit coreceptor. We postulate that this domain class facilitates direct protein-protein interactions in many transmembrane receptors.  相似文献   

12.
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, continues to be a major threat to populations worldwide. Whereas the disease is treatable, the drug regimen is arduous at best with the use of four antimicrobials over a six‐month period. There is clearly a pressing need for the development of new therapeutics. One potential target for structure‐based drug design is the enzyme RmlA, a glucose‐1‐phosphate thymidylyltransferase. This enzyme catalyzes the first step in the biosynthesis of l ‐rhamnose, which is a deoxysugar critical for the integrity of the bacterium's cell wall. Here, we report the X‐ray structures of M. tuberculosis RmlA in complex with either dTTP or dTDP‐glucose to 1.6 Å and 1.85 Å resolution, respectively. In the RmlA/dTTP complex, two magnesium ions were observed binding to the nucleotide, both ligated in octahedral coordination spheres. In the RmlA/dTDP‐glucose complex, only a single magnesium ion was observed. Importantly, for RmlA‐type enzymes with known three‐dimensional structures, not one model shows the position of the magnesium ion bound to the nucleotide‐linked sugar. As such, this investigation represents the first direct observation of the manner in which a magnesium ion is coordinated to the RmlA product and thus has important ramifications for structure‐based drug design. In the past, molecular modeling procedures have been employed to derive a three‐dimensional model of the M. tuberculosis RmlA for drug design. The X‐ray structures presented herein provide a superior molecular scaffold for such endeavors in the treatment of one of the world's deadliest diseases.  相似文献   

13.
In Mycobacterium tuberculosis and ampicillin‐resistant mutants of Enterococcus faecium, the classical target of β‐lactam antibiotics is bypassed by l ,d ‐transpeptidases that form unusual 3 → 3 peptidoglycan cross‐links. β‐lactams of the carbapenem class, such as ertapenem, are mimics of the acyl donor substrate and inactivate l ,d ‐transpeptidases by acylation of their catalytic cysteine. We have blocked the acyl donor site of E. faecium l ,d ‐transpeptidase Ldtfm by ertapenem and identified the acyl acceptor site based on analyses of chemical shift perturbations induced by binding of peptidoglycan fragments to the resulting acylenzyme. An nuclear magnetic resonance (NMR)‐driven docking structure of the complex revealed key hydrogen interactions between the acyl acceptor and Ldtfm that were evaluated by site‐directed mutagenesis and development of a cross‐linking assay. Three residues are reported as critical for stabilisation of the acceptor in the Ldtfm active site and proper orientation of the nucleophilic nitrogen for the attack of the acylenzyme carbonyl. Identification of the catalytic pocket dedicated to the acceptor substrate opens new perspectives for the design of inhibitors with an original mode of action that could act alone or in synergy with β‐lactams.  相似文献   

14.
Recent studies have demonstrated that the O‐antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N‐formylated sugars (3‐formamido‐3,6‐dideoxy‐d ‐glucose or 4‐formamido‐4,6‐dideoxy‐d ‐glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6‐dehydratase, a pyridoxal 5'‐phosphate or PLP‐dependent aminotransferase, and an N‐formyltransferase. To date, there have been no published reports of N‐formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N‐formyltransferase. Given that M. tuberculosis produces l ‐rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6‐dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N‐formylated sugar in M. tuberculosis, namely a PLP‐dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.  相似文献   

15.
Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP‐β‐l ‐rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP‐β‐l ‐rhamnose. The mutant H357Q exhibited activity with both UDP‐β‐l ‐rhamnose and UDP‐glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor‐His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.  相似文献   

16.
In the present study, we report synthesis and biological evaluation of the N‐Boc‐protected tripeptides 4a–l and N‐For protected tripeptides 5a–l as new For‐Met‐Leu‐Phe‐OMe (fMLF‐OMe) analogues. All the new ligands are characterized by the C‐terminal Phe residue variously substituted at position 4 of the aromatic ring. The agonism of 5a–l and the antagonism of 4a–l (chemotaxis, superoxide anion production, lysozyme release as well as receptor binding affinity) have been examined on human neutrophils. No synthesized compounds has higher activity than the standard fMLF‐OMe tripeptide to stimulate chemotaxis, although compounds 5a and 5c with ‐CH3 and ‐C(CH3)3, respectively, in position 4 on the aromatic ring, are better than the standard tripeptide to stimulate the production of superoxide anion, in higher concentration. Compounds 4f and 4i , containing ‐F and ‐I in position 4, respectively, on the aromatic ring of phenylalanine, exhibit significant chemotactic antagonism. The influence of the different substitution at the position 4 on the aromatic ring of phenylalanine is discussed. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

18.
Inducible utilization pathways reflect widespread microbial strategies to uptake and consume sugars from the environment. Despite their broad importance and extensive characterization, little is known how these pathways naturally respond to their inducing sugar in individual cells. Here, we performed single‐cell analyses to probe the behaviour of representative pathways in the model bacterium Escherichia coli. We observed diverse single‐cell behaviours, including uniform responses (d ‐lactose, d ‐galactose, N‐acetylglucosamine, N‐acetylneuraminic acid), ‘all‐or‐none’ responses (d ‐xylose, l ‐rhamnose) and complex combinations thereof (l ‐arabinose, d ‐gluconate). Mathematical modelling and probing of genetically modified pathways revealed that the simple framework underlying these pathways – inducible transport and inducible catabolism – could give rise to most of these behaviours. Sugar catabolism was also an important feature, as disruption of catabolism eliminated tunable induction as well as enhanced memory of previous conditions. For instance, disruption of catabolism in pathways that respond to endogenously synthesized sugars led to full pathway induction even in the absence of exogenous sugar. Our findings demonstrate the remarkable flexibility of this simple biological framework, with direct implications for environmental adaptation and the engineering of synthetic utilization pathways as titratable expression systems and for metabolic engineering.  相似文献   

19.
Previously, we determined the crystal structure of apo‐TpMglB‐2, a d ‐glucose‐binding component of a putative ABC transporter from the syphilis spirochete Treponema pallidum. The protein had an unusual topology for this class of proteins, raising the question of whether the d ‐glucose‐binding mode would be different in TpMglB‐2. Here, we present the crystal structures of a variant of TpMglB‐2 with and without d ‐glucose bound. The structures demonstrate that, despite its aberrant topology, the protein undergoes conformational changes and binds d ‐glucose similarly to other Mgl‐type proteins, likely facilitating d ‐glucose uptake in T. pallidum.  相似文献   

20.
Novel Ca2+‐independent C‐type lectins, SPL‐1 and SPL‐2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL‐2 composed of two B‐chains) or distinct (SPL‐1 composed of A‐ and B‐chains) polypeptide chains, and show affinity for N‐acetylglucosamine (GlcNAc)‐ and N‐acetylgalactosamine (GalNAc)‐containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C‐type lectin family. X‐ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate‐recognition domain (CRD) of the C‐type lectin family. Nevertheless, these lectins (especially SPL‐2) showed Ca2+‐independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL‐2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate‐recognition motifs among the C‐type CRD (the QPD [Gln‐Pro‐Asp] and EPN [Glu‐Pro‐Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate‐binding specificities of individual A‐ and B‐chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α‐glycosidic linkages with slightly different specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号