首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PYP (photoactive yellow protein) is a photoreceptor protein, which is activated upon photo-isomerization of the p-coumaric acid chromophore and is inactivated as the chromophore is thermally back-isomerized within a second (in PYP(M)-to-PYP(dark) conversion). Here we have examined the mechanism of the rapid thermal isomerization by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction [Devanathan, S. et al. (1998) Biochemistry 37, 11563-11568]. The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by one to three orders of magnitude. By evaluating temperature-dependence of the kinetics, it was found that the retardation resulted unequivocally from elevations of activation enthalpy (DeltaH( double dagger )) but not the other parameters such as activation entropy or heat capacity changes. Another effect exerted by the mutations was an up-shift of the apparent pK(a) of the chromophore [the pK(a) of a titratable group (X) that controls the pK(a) of the chromophore] in the PYP(M)-decay process. The pK(a) up-shift and the DeltaH( double dagger ) elevation show an approximately linear correlation. We, therefore, postulate that the role of Met100 is to reduce the energy barrier of the PYP(M)-decay process by an indirect interaction through X and that the process is thereby facilitated.  相似文献   

2.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

3.
As a bacterial blue light sensor the photoactive yellow protein (PYP) undergoes conformational changes upon signal transduction. The absorption of a photon triggers a series of events that are initially localized around the protein chromophore, extends to encompass the whole protein within microseconds, and leads to the formation of the transient pB signaling state. We study the formation of this signaling state pB by molecular simulation and predict its solution structure. Conventional straightforward molecular dynamics is not able to address this formation process due to the long (microsecond) timescales involved, which are (partially) caused by the presence of free energy barriers between the metastable states. To overcome these barriers, we employed the parallel tempering (or replica exchange) method, thus enabling us to predict qualitatively the formation of the PYP signaling state pB. In contrast to the receptor state pG of PYP, the characteristics of this predicted pB structure include a wide open chromophore-binding pocket, with the chromophore and Glu(46) fully solvent-exposed. In addition, loss of alpha-helical structure occurs, caused by the opening motion of the chromophore-binding pocket and the disruptive interaction of the negatively charged Glu(46) with the backbone atoms in the hydrophobic core of the N-terminal cap. Recent NMR experiments agree very well with these predictions.  相似文献   

4.
Light-activation of the PAS domain protein photoactive yellow protein (PYP) is believed to trigger a negative phototactic response in the phototropic bacterium Halorhodospira halophila. To investigate transient conformational changes of the PYP photocycle, we utilized the PYP mutant M100L that displays an increased lifetime of the putative signaling-state photointermediate PYP(M) by 3 orders of magnitude, as previously reported for the M100A mutant [Devanathan, S., Genick, U. K., Canestrelli, I. L., Meyer, T. E., Cusanovich, M. A., Getzoff, E. D., and Tollin, G. Biochemistry (1998) 37, 11563-11568]. The FTIR difference spectrum of PYP(M) and the ground state of M100L demonstrated extensive peptide-backbone structural changes as observed in the FTIR difference spectrum of the wild-type protein and PYP(M). The conformational change investigated by CD spectroscopy in the far-UV region showed reduction of the alpha-helical content by approximately 40%, indicating a considerable amount of changes in the secondary structure. The optical activity of the p-coumaric acid chromophore completely vanished upon PYP(M) in contrast to the dark state, indicating deformation of the binding pocket structure in PYP(M). The tertiary structural changes were further monitored by small-angle X-ray scattering measurements, which demonstrated a significant increase of the radius of gyration of the molecule by approximately 5% in PYP(M). These structural changes were reversed concomitantly with the chromophore anionization upon the dark state recovery. The observed changes of the quantities provided a more vivid view of the structural changes of the mutant PYP in going from PYP(M) to PYP(dark), which can be regarded as a process of folding of the secondary and the tertiary structures of the "PAS" domain structure, coupled with the p-coumaric acid chromophore deprotonation and isomerization.  相似文献   

5.
Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.  相似文献   

6.
Molecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.  相似文献   

7.
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.  相似文献   

8.
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C4-C7 single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C4-C7 single-bond rotation in PYP is not an alternative to C7=C8 double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore.  相似文献   

9.
A gene for photoactive yellow protein (PYP) was previously cloned from Rhodobacter capsulatus (Rc), and we have now found it to be associated with genes for gas vesicle formation in the recently completed genome sequence. However, the PYP had not been characterized as a protein. We have now produced the recombinant RcPYP in Escherichia coli as a glutathione-S-transferase (GST) fusion protein, along with the biosynthetic enzymes, resulting in the formation of holo-RcPYP following cleavage of the GST tag. The absorption spectrum (with characteristic peaks at 435 and 375 nm) and the photocycle kinetics, initiated by a laser flash at 445 nm, are generally similar to those of Rhodobacter sphaeroides (RsPYP) but are significantly different from those of the prototypic PYP from Halorhodospira halophila (HhPYP), which has a single peak at 446 nm and has slower recovery. RcPYP also is photoactive when excited with near-ultraviolet laser light, but the end point is then above the preflash baseline. This suggests that some of the PYP chromophore is present in the cis-protonated conformation in the resting state. The excess 435 nm form in RcPYP, built up from repetitive 365 nm laser flashes, returns to the preflash baseline with an estimated half-life of 2 h, which is markedly slower than that for the same reaction in RsPYP. Met100 has been reported to facilitate cis-trans isomerization in HhPYP, yet both Rc and RsPYPs have Lys and Gly substitutions at positions 99 and 100 (using HhPYP numbering throughout) and have 100-fold faster recovery kinetics than does HhPYP. However, the G100M and K99Q mutations of RcPYP have virtually no effect on kinetics. Apparently, the RcPYP M100 is in a different conformation, as was recently found for the PYP domain of Rhodocista centenaria Ppr. The cumulative results show that the two Rhodobacter PYPs are clearly distinct from the other species of PYP that have been characterized. These properties also suggest a different functional role, that we postulate to be in regulation of gas vesicle genes, which are known to be light-regulated in other species.  相似文献   

10.
The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic–aromatic, aromatic–aliphatic or/and aliphatic–aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals interactions. Analysis of the interactions present in membrane protein crystal structures, together with the characterization of their strength in small‐molecule model systems at the ab‐initio level, predicts that Met–Met interactions are stronger than Met–Cys ≈ Met–Phe ≈ Cys–Phe interactions, stronger than Phe–Phe ≈ Phe–Leu interactions, stronger than the Met–Leu interaction, and stronger than Leu–Leu ≈ Cys–Leu interactions. These results show that sulfur‐containing amino acids form stronger interactions than aromatic or aliphatic amino acids. Thus, these amino acids may provide additional driving forces for maintaining the 3D structure of membrane proteins and may provide functional specificity.  相似文献   

11.
Visualizing the three-dimensional structures of a protein during its biological activity is key to understanding its mechanism. In general, protein structure and function are pH-dependent. Changing the pH provides new insights into the mechanisms that are involved in protein activity. Photoactive yellow protein (PYP) is a signaling protein that serves as an ideal model for time-dependent studies on light-activated proteins. Its photocycle is studied extensively under different pH conditions. However, the structures of the intermediates remain unknown until time-resolved crystallography is employed. With the newest beamline developments, a comprehensive time series of Laue data can now be collected from a single protein crystal. This allows us to vary the pH. Here we present the first structure, to our knowledge, of a short-lived protein-inhibitor complex formed in the pB state of the PYP photocycle at pH 4. A water molecule that is transiently stabilized in the chromophore active site prevents the relaxation of the chromophore back to the trans configuration. As a result, the dark-state recovery is slowed down dramatically. At pH 9, PYP stops cycling through the pB state altogether. The electrostatic environment in the chromophore-binding site is the likely reason for this altered kinetics at different pH values.  相似文献   

12.
The Photoactive Yellow Protein (PYP) is a structural prototype for the PAS superfamily of proteins, which includes hundreds of receptor and regulatory proteins from all three kingdoms of life. PYP itself is a small globular protein that undergoes a photocycle involving a series of conformational changes in response to light excitation of its p-coumaric acid chromophore, making it an excellent model system to study the molecular basis of signaling in the PAS super family. To enable novel chemical approaches to elucidating the structural changes that accompany signaling in PYP, we have chemically synthesized the 125 amino acid residue protein molecule using a combination of Boc chemistry solid phase peptide synthesis and native chemical ligation. Synthetic PYP exhibits the wildtype photocycle, as determined in photobleaching studies. Planned future studies include incorporation of site-specific isotopic labels into specific secondary structural elements to determine which structural elements are involved in signaling state formation using difference FTIR spectroscopy.  相似文献   

13.
Photoactive yellow protein (PYP) is a photoreceptor that has been isolated from three halophilic phototrophic purple bacteria. The PYP from Ectothiorhodospira halophila BN9626 is the only member for which the sequence has been reported at the DNA level. Here we describe the cloning and sequencing of the genes encoding the PYPs from E.halophila SL-1 (type strain) and Rhodospirillum salexigens. The latter protein contains, like the E.halophila PYP, the chromophore trans p-coumaric acid, as we show here with high performance capillary zone electrophoresis. Additionally, we present evidence for the presence of a gene encoding a PYP homolog in Rhodobacter sphaeroides, the first genetically well-characterized bacterium in which this photoreceptor has been identified. An ORF downstream of the pyp gene from E.halophila encodes an enzyme, which is proposed to be involved in the biosynthesis of the chromophore of PYP. The pyp gene from E.halophila was used for heterologous overexpression in both Escherichia coli and R.sphaeroides, aimed at the development of a holoPYP overexpression system (an intact PYP, containing the p-coumaric acid chromophore and displaying the 446 nm absorbance band). In both organisms the protein could be detected immunologically, but its yellow color was not observed. Molecular genetic construction of a histidine-tagged version of PYP led to its 2500-fold overproduction in E.coli and simplified purification of the heterologously produced apoprotein. HoloPYP could be reconstituted by the addition of p-coumaric anhydride to the histidine-tagged apoPYP (PYP lacking its chromophore). We propose to call the family of photoactive yellow proteins the xanthopsins, in analogy with the rhodopsins.  相似文献   

14.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

15.
In this study we have investigated binding of the fluorescent hydrophobicity probe Nile Red to the photoactive yellow protein (PYP), to characterize the exposure and accessibility of hydrophobic surface upon formation of the signaling state of this photoreceptor protein. Binding of Nile Red, reflected by a large blue shift and increase in fluorescence quantum yield of the Nile Red emission, is observed exclusively when PYP resides in its signaling state. N-terminal truncation of the protein allows assignment of the region surrounding the chromophore as the site where Nile Red binds to PYP. We also observed a pH dependence of the affinity of Nile Red for pB, which we propose is caused by pH dependent differences of the structure of the signaling state. From a comparative analysis of the kinetics of Nile Red binding and transient absorption changes in the visible region we can conclude that protonation of the chromophore precedes the exposure of a hydrophobic surface near the chromophore binding site, upon formation of the signaling state. Furthermore, the data presented here favor the view that the signaling state is structurally heterogeneous.  相似文献   

16.
Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in 相似文献   

17.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

18.
Time-resolved ultraviolet-visible spectroscopy was used to characterize the photocycle transitions in single crystals of wild-type and the E-46Q mutant of photoactive yellow protein (PYP) with microsecond time resolution. The results were compared with the results of similar measurements on aqueous solutions of these two variants of PYP, with and without the components present in the mother liquor of crystals. The experimental data were analyzed with global and target analysis. Distinct differences in the reaction path of a PYP molecule are observed between these conditions when it progresses through its photocycle. In the crystalline state i), much faster relaxation of the late blue-shifted photocycle intermediate back to the ground state is observed; ii), this intermediate in crystalline PYP absorbs at 380 nm, rather than at 350-360 nm in solution; and iii), for various intermediates of this photocycle the forward reaction through the photocycle directly competes with a branching reaction that leads directly to the ground state. Significantly, with these altered characteristics, the spectroscopic data on PYP are fully consistent with the structural data obtained for this photoreceptor protein with time-resolved x-ray diffraction analysis, particularly for wild-type PYP.  相似文献   

19.
The complete amino acid sequence of the 125-residue photoactive yellow protein (PYP) from Ectothiorhodospira halophila has been determined to be MEHVAFGSEDIENTLAKMDDGQLDGLAFGAIQLDGDGNILQYNAAEGDITGRDPKEVIGKNFFKDVAP+ ++ CTDSPEFYGKFKEGVASGNLNTMFEYTFDYQMTPTKVKVHMKKALSGDSYWVFVKRV. This is the first sequence to be reported for this class of proteins. There is no obvious sequence homology to any other protein, although the crystal structure, known at 2.4 A resolution (McRee, D.E., et al., 1989, Proc. Natl. Acad. Sci. USA 86, 6533-6537), indicates a relationship to the similarly sized fatty acid binding protein (FABP), a representative of a family of eukaryotic proteins that bind hydrophobic molecules. The amino acid sequence exhibits no greater similarity between PYP and FABP than for proteins chosen at random (8%). The photoactive yellow protein contains an unidentified chromophore that is bleached by light but recovers within a second. Here we demonstrate that the chromophore is bound covalently to Cys 69 instead of Lys 111 as deduced from the crystal structure analysis. The partially exposed side chains of Tyr 76, 94, and 118, plus Trp 119 appear to be arranged in a cluster and probably become more exposed due to a conformational change of the protein resulting from light-induced chromophore bleaching. The charged residues are not uniformly distributed on the protein surface but are arranged in positive and negative clusters on opposite sides of the protein. The exact chemical nature of the chromophore remains undetermined, but we here propose a possible structure based on precise mass analysis of a chromophore-binding peptide by electrospray ionization mass spectrometry and on the fact that the chromophore can be cleaved off the apoprotein upon reduction with a thiol reagent. The molecular mass of the chromophore, including an SH group, is 147.6 Da (+/- 0.5 Da); the cysteine residue to which it is bound is at sequence position 69.  相似文献   

20.
Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated 13Cγ resonances in sensitive and well-resolved two-dimensional 13C-1H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pKa values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41–11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号