首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Crystal structures of the purine-specific nucleoside hydrolase from Trypanosoma vivax have previously been solved in complex with inhibitors or a substrate. All these structures show the dimeric T. vivax nucleoside hydrolase with an "open" active site with a highly flexible loop (loop 2) in its vicinity. Here, we present the crystal structures of the T. vivax nucleoside hydrolase with both soaked (TvNH-ImmH(soak)) and co-crystallised (TvNH-ImmH(co)) transition-state inhibitor immucillin H (ImmH or (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol) to 2.1 A and 2.2 A resolution, respectively. In the co-crystallised structure, loop 2 is ordered and folds over the active site, establishing previously unobserved enzyme-inhibitor interactions. As such this structure presents the first complete picture of a purine-specific NH active site, including leaving group interactions. In the closed active site, a water channel of highly ordered water molecules leads out from the N7 of the nucleoside toward bulk solvent, while Trp260 approaches the nucleobase in a tight parallel stacking interaction. Together with mutagenesis results, this structure rules out a mechanism of leaving group activation by general acid catalysis, as proposed for base-aspecific nucleoside hydrolases. Instead, the structure is consistent with the previously proposed mechanism of leaving group protonation in the T. vivax nucleoside hydrolase where aromatic stacking with Trp260 and an intramolecular O5'-H8C hydrogen bond increase the pKa of the N7 sufficiently to allow protonation by solvent. A mechanism that couples loop closure to the positioning of active site residues is proposed based on a comparison of the soaked structure with the co-crystallized structure. Interestingly, the dimer interface area increases by 40% upon closure of loop 2, with loop 1 of one subunit interacting with loop 2 of the other subunit, suggesting a relationship between the dimeric form of the enzyme and its catalytic activity.  相似文献   

2.
Nucleoside diphosphate kinase (NDK) is known to form homotetramers or homohexamers. To clarify the oligomer state of NDK from moderately halophilic Halomonas sp. 593 (HaNDK), the oligomeric state of HaNDK was characterized by light scattering followed by X‐ray crystallography. The molecular weight of HaNDK is 33,660, and the X‐ray crystal structure determination to 2.3 and 2.7 Å resolution showed a dimer form which was confirmed in the different space groups of R3 and C2 with an independent packing arrangement. This is the first structural evidence that HaNDK forms a dimeric assembly. Moreover, the inferred molecular mass of a mutant HaNDK (E134A) indicated 62.1–65.3 kDa, and the oligomerization state was investigated by X‐ray crystallography to 2.3 and 2.5 Å resolution with space groups of P21 and C2. The assembly form of the E134A mutant HaNDK was identified as a Type I tetramer as found in Myxococcus NDK. The structural comparison between the wild‐type and E134A mutant HaNDKs suggests that the change from dimer to tetramer is due to the removal of negative charge repulsion caused by the E134 in the wild‐type HaNDK. The higher ordered association of proteins usually contributes to an increase in thermal stability and substrate affinity. The change in the assembly form by a minimum mutation may be an effective way for NDK to acquire molecular characteristics suited to various circumstances.  相似文献   

3.
Beta-lactamases are involved in bacterial resistance. Members of the metallo-enzyme class are now found in many pathogenic bacteria and are becoming thus of major clinical importance. Despite the availability of Zn-beta-lactamase X-ray structures their mechanism of action is still unclear. One puzzling observation is the presence of one or two zincs in the active site. To aid in assessing the role of zinc content in beta-lactam hydrolysis, the replacement by Ser of the zinc-liganding residue Cys168 in the Zn-beta-lactamase from Bacillus cereus strain 569/H/9 was carried out: the mutant enzyme (C168S) is inactive in the mono-Zn form, but active in the di-Zn form. The structure of the mono-Zn form of the C168S mutant has been determined at 1.85 A resolution. Ser168 occupies the same position as Cys168 in the wild-type enzyme. The protein residues mostly affected by the mutation are Asp90-Arg91 and His210. A critical factor for the activity of the mono-Zn species is the distance between Asp90 and the Zn ion, which is controlled by Arg91: a slight movement of Asp90 impairs catalysis. The evolution of a large superfamily including Zn-beta-lactamases suggests that they may not all share the same mechanism.  相似文献   

4.
The VapC toxin from the Shigella flexneri 2a virulence plasmid pMYSH6000 belongs to the PIN domain protein family, which is characterized by a conserved fold with low amino acid sequence conservation. The toxin is a bona fide Mg2+‐dependent ribonuclease and has been shown to target initiator tRNAfMet in vivo. Here, we present crystal structures of active site catalytic triad mutants D7A, D7N, and D98N of the VapC toxin in absence of antitoxin. In all structures, as well as in solution, VapC forms a dimer. In the D98N structure, a Hepes molecule occupies both active sites of the dimer and comparison with the structure of RNase H bound to a DNA/RNA hybrid suggests that the Hepes molecule mimics the position of an RNA nucleotide in the VapC active site. Proteins 2016; 84:892–899. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Widely spread in Gram‐negative bacteria, the type VI secretion system (T6SS) secretes many effector‐immunity protein pairs to help the bacteria compete against other prokaryotic rivals, and infect their eukaryotic hosts. Tle5 and Tle5B are two phospholipase effector protein secreted by T6SS of Pseudomonas aeruginosa. They can facilitate the bacterial internalization process into human epithelial cells by interacting with Akt protein of the PI3K‐Akt signal pathway. Tli5 and PA5086‐5088 are cognate immunity proteins of Tle5 and Tle5B, respectively. They can interact with their cognate effector proteins to suppress their virulence. Here, we report the crystal structure of Tli5 at 2.8Å resolution and successfully fit it into the Small angle X‐ray scattering (SAXS) model of the complete Tle5–Tli5 complex. We identified two important motifs in Tli5 through sequence and structural analysis. One is a conserved loop‐β‐hairpin motif that exists in the Tle5 immunity homologs, the other is a long and sharp α‐α motif that directly interacts with Tle5 according to SAXS data. We also distinguished the structural features of Tle5 and Tle5B family immunity proteins. Together, our work provided insights into a novel inhibition mechanism that may enhance our understanding of phospholipase D family proteins.  相似文献   

6.
7.
The dynamics of enzyme catalysis range from the slow time scale (~ms) for substrate binding and conformational changes to the fast time (~ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X‐ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild‐type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.  相似文献   

8.
The protein Smu.1393c from Streptococcus mutans is annotated as a putative α/β hydrolase, but it has low sequence identity to the structure‐known α/β hydrolases. Here we present the crystal structure of Smu.1393c at 2.0 Å resolution. Smu.1393c has a fully open alkaline substrate pocket, whose conformation is unique among other similar hydrolase structures. Three residues, Ser101, His251, and Glu125, were identified as the active center of Smu.1393c. By screening a series of artificial hydrolase substrates, we demonstrated Smu.1393c had low carboxylesterase activity towards short‐chain carboxyl esters, which provided a clue for exploring the in vivo function of Smu.1393c. Proteins 2014; 82:695–700. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The Nudix hydrolase superfamily, characterized by the presence of the signature sequence GX(5)EX(7)REUXEEXGU (where U is I, L, or V), is a well-studied family in which relations have been established between primary sequence and substrate specificity for many members. For example, enzymes that hydrolyze the diphosphate linkage of ADP-ribose are characterized by having a proline 15 amino acids C-terminal of the Nudix signature sequence. GDPMK is a Nudix enzyme that conserves this characteristic proline but uses GDP-mannose as the preferred substrate. By investigating the structure of the GDPMK alone, bound to magnesium, and bound to substrate, the structural basis for this divergent substrate specificity and a new rule was identified by which ADP-ribose pyrophosphatases can be distinguished from purine-DP-mannose pyrophosphatases from primary sequence alone. Kinetic and mutagenesis studies showed that GDPMK hydrolysis does not rely on a single glutamate as the catalytic base. Instead, catalysis is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. GDPMK was thought to play a role in biofilm formation because of its upregulation in response to RcsC signaling; however, GDPMK knockout strains show no defect in their capacity of forming biofilms.  相似文献   

10.
The structure of the trimeric adenylate kinase from the Archaebacteria Methanococcus mariplaludis (AKMAR) has been solved to 2.5‐Å resolution and the temperature dependent stability and kinetics of the enzyme measured. The KM and Vmax of AKMAR exhibit only modest temperature dependence from 30°–60°C. Although M. mariplaludis is a mesophile with a maximum growth temperature of 43°C, AKMAR has a very broad functional range and stability (Tm = 74.0°C) that are more consistent with a thermophilic enzyme with high thermostability and exceptional activity over a wide range of temperatures, suggesting that this microbe may have only recently invaded a mesophilic niche and has yet to fully adapt. A comparison of the Local Structural Entropy (LSE) for AKMAR to the related adenylate kinases from the mesophile Methanococcus voltae and thermophile Methanococcus thermolithotrophicus show that changes in LSE are able to fully account for the intermediate stability of AKMAR and highlights a general mechanism for protein adaptation in this class of enzymes. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
True catalases are tyrosine‐liganded, usually tetrameric, hemoproteins with subunit sizes of ~55–84 kDa. Recently characterized hemoproteins with a catalase‐related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X‐ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP‐2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide‐dependent peroxidase activity. MAP‐2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (~300/s) using organic hydroperoxides as co‐substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP‐2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species.  相似文献   

13.
14.
The bacterial type VI secretion system (T6SS) utilizes many toxic effectors to gain advantage over interbacterial competition and eukaryotic host infection. Meanwhile, the cognate immunity proteins of these effectors are employed to protect themselves from the virulence. TseT and TsiT form an effector‐immunity (E‐I) protein pair secreted by T6SS of Pseudomonas aeruginosa. TseT is toxic for other bacteria, whereas TsiT can suppress the virulence of TseT. Here, we report the crystal structure of TsiT at 1.6 Å resolution. TsiT is a typical α + β class protein and belongs to a novel Imm52 protein family of the polymorphic toxin system. Apart from TsiT, only one structure of the Imm52 family proteins is present in the Protein Data Bank (PDB), but that structure is not characterized and shares low sequence identity with TsiT. We characterized the basic features of TsiT structure and identified conserved residues of the Imm52 family proteins according to homology comparison. Our work provided structural information of a new protein family and should aid future functional studies.  相似文献   

15.
African trypanosomiasis, caused by parasites of the genus Trypanosoma, is a complex of devastating vector‐borne diseases of humans and livestock in sub‐Saharan Africa. Central to the pathogenesis of African trypanosomes is their transmission by the arthropod vector, Glossina spp. (tsetse fly). Intriguingly, the efficiency of parasite transmission through the vector is reduced following depletion of Trypanosoma brucei Procyclic‐Specific Surface Antigen‐2 (TbPSSA‐2). To investigate the underlying molecular mechanism of TbPSSA‐2, we determined the crystal structures of its ectodomain and that of its homolog T. congolense Insect Stage Antigen (TcISA) to resolutions of 1.65 Å and 2.45 Å, respectively using single wavelength anomalous dispersion. Both proteins adopt a novel bilobed architecture with the individual lobes displaying rotational flexibility around the central tether that suggest a potential mechanism for coordinating a binding partner. In support of this hypothesis, electron density consistent with a bound peptide was observed in the inter‐lob cleft of a TcISA monomer. These first reported structures of insect stage transmembrane proteins expressed by African trypanosomes provide potentially valuable insight into the interface between parasite and tsetse vector.  相似文献   

16.
Noncatalytic carbohydrate binding modules (CBMs) have been demonstrated to play various roles with cognate catalytic domains. However, for polysaccharide lyases (PLs), the roles of CBMs remain mostly unknown. AlyB is a multidomain alginate lyase that contains CBM32 and a PL7 catalytic domain. The AlyB structure determined herein reveals a noncanonical alpha helix linker between CBM32 and the catalytic domain. More interestingly, CBM32 and the linker does not significantly enhance the catalytic activity but rather specifies that trisaccharides are predominant in the degradation products. Detailed mutagenesis, biochemical and cocrystallization analyses show “weak but important” CBM32 interactions with alginate oligosaccharides. In combination with molecular modeling, we propose that the CBM32 domain serves as a “pivot point” during the trisaccharide release process. Collectively, this work demonstrates a novel role of CBMs in the activity of the appended PL domain and provides a new avenue for the well-defined generation of alginate oligosaccharides by taking advantage of associated CBMs.  相似文献   

17.
Enhanced intracellular survival (Eis) proteins belonging to the superfamily of the GCN5‐related N‐acetyltransferases play important functions in mycobacterial pathogenesis. In Mycobacterium tuberculosis, Eis enhances the intracellular survival of the bacilli in macrophages by modulating the host immune response and is capable to chemically modify and inactivate aminoglycosides. In nontuberculous mycobacteria (NTM), Eis shares similar functions. However, Mycobacterium abscessus, a multidrug resistant NTM, possesses two functionally distinct Eis homologues, Eis1Mab and Eis2Mab. While Eis2Mab participates in virulence and aminoglycosides resistance, this is not the case for Eis1Mab, whose exact biological function remains to be determined. Herein, we show that overexpression of Eis1Mab in M. abscessus fails to induce resistance to aminoglycosides. To clarify why Eis1Mab is unable to modify this class of antibiotics, we solved its crystal structure bound to its cofactor, acetyl‐CoA. The structure revealed that Eis1Mab has a typical homohexameric Eis‐like organization. The structural analysis supported by biochemical approaches demonstrated that while Eis1Mab can acetylate small substrates, its active site is too narrow to accommodate aminoglycosides. Comparison with other Eis structures showed that an extended loop between strands 9 and 10 is blocking the access of large substrates to the active site and movement of helices 4 and 5 reduces the volume of the substrate‐binding pocket to these compounds in Eis1Mab. Overall, this study underscores the molecular determinants explaining functional differences between Eis1Mab and Eis2Mab, especially those inherent to their capacity to modify aminoglycosides.  相似文献   

18.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

19.
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   

20.
Shokhen M  Khazanov N  Albeck A 《Proteins》2008,70(4):1578-1587
The pKa of the catalytic His57 N(epsilon)H in the tetrahedral complex (TC) of chymotrypsin with trifluoromethyl ketone inhibitors is 4-5 units higher relative to the free enzyme (FE). Such stable TC's, formed with transition state (TS) analog inhibitors, are topologically similar to the catalytic TS. Thus, analysis of this pKa shift may shed light on the role of water solvation in the general base catalysis by histidine. We applied our QM/SCRF(VS) approach to study this shift. The method enables explicit quantum mechanical DFT calculations of large molecular clusters that simulate chemical reactions at the active site (AS) of water solvated enzymes. We derived an analytical expression for the pKa dependence on the degree of water exposure of the ionizable group, and on the total charge in the enzyme AS, Q(A) and Q(B), when the target ionizable functional group (His57 in this study) is in the acidic (A) and basic (B) forms, respectively. Q2(B) > Q2(A) both in the FE and in the TC of chymotrypsin. Therefore, water solvation decreases the relative stability of the protonated histidine in both. Ligand binding reduces the degree of water solvation of the imidazole ring, and consequently elevates the histidine pKa. Thus, the binding of the ligand plays a triggering role that switches on the cascade of catalytic reactions in serine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号