首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aims: In this study, mechanisms of antimicrobial resistance and genetic relatedness among resistant enterococci from dogs and cats in the United States were determined. Methods and Results: Enterococci resistant to chloramphenicol, ciprofloxacin, erythromycin, gentamicin, kanamycin, streptomycin, lincomycin, quinupristin/dalfopristin and tetracycline were screened for the presence of 15 antimicrobial resistance genes. Five tetracycline resistance genes [tet(M), tet(O), tet(L), tet(S) and tet(U)] were detected with tet(M) accounting for approx. 60% (130/216) of tetracycline resistance; erm(B) was also widely distributed among 96% (43/45) of the erythromycin‐resistant enterococci. Five aminoglycoside resistance genes were also detected among the kanamycin‐resistant isolates with the majority of isolates (25/36; 69%) containing aph(3′)‐IIIa. The bifunctional aminoglycoside resistance gene, aac(6′)‐Ie‐aph(2″)‐Ia, was detected in gentamicin‐resistant isolates and ant(6)‐Ia in streptomycin‐resistant isolates. The most common gene combination among enterococci from dogs (n = 11) was erm(B), aac(6′)‐Ie‐aph(2″)‐Ia, aph(3′)‐IIIa, tet(M), while tet(O), tet(L) were most common among cats (n = 18). Using pulsed‐field gel electrophoresis (PFGE), isolates clustered according to enterococcal species, source and antimicrobial gene content and indistinguishable patterns were observed for some isolates from dogs and cats. Conclusion: Enterococci from dogs and cats may be a source of antimicrobial resistance genes. Significance and Impact of the Study: Dogs and cats may act as reservoirs of antimicrobial resistance genes that can be transferred from pets to people. Although host‐specific ecovars of enterococcal species have been described, identical PFGE patterns suggest that enterococcal strains may be exchanged between these two animal species.  相似文献   

2.
Acyl‐coenzyme A‐dependent N‐acetyltransferases (AACs) catalyze the modification of aminoglycosides rendering the bacteria carrying such enzymes resistant to this class of antibiotics. Here we present the crystal structure of AAC(3)‐Ia enzyme from Serratia marcescens in complex with coenzyme A determined to 1.8 Å resolution. This enzyme served as an architype for the AAC enzymes targeting the amino group at Position 3 of aminoglycoside main aminocyclitol ring. The structure of this enzyme has been previously determined only in truncated form and was interpreted as distinct from subsequently characterized AACs. The reason for the unusual arrangement of secondary structure elements of AAC(3)‐Ia was not further investigated. By determining the full‐length structure of AAC(3)‐Ia we establish that this enzyme adopts the canonical AAC fold conserved across this family and it does not undergo through significant rearrangement of secondary structure elements upon ligand binding as was proposed previously. In addition, our results suggest that the C‐terminal tail in AAC(3)‐Ia monomer forms intramolecular hydrogen bonds that contributes to formation of stable dimer, representing the predominant oligomeric state for this enzyme.  相似文献   

3.
Kinetic, thermodynamic, and structural properties of the aminoglycoside N3‐acetyltransferase‐VIa (AAC‐VIa) are determined. Among the aminoglycoside N3‐acetyltransferases, AAC‐VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference in kcat values. Larger differences in KM (~40‐fold) resulted in ~30‐fold variation in kcat/KM. Binding of aminoglycosides to AAC‐VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (ΔG < 0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycoside N3‐acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (ΔCp) was different in H2O and D2O for the binary enzyme–sisomicin complex but remained the same in both solvents for the ternary enzyme–CoASH–sisomicin complex. Unlike, most other aminoglycoside‐modifying enzymes, the values of ΔCp were within the expected range of protein‐carbohydrate interactions. Solution behavior of AAC‐VIa was also different from the more promiscuous aminoglycoside N3‐acetyltransferases and showed a monomer‐dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand‐protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycoside N3‐acetyltransferase. Proteins 2017; 85:1258–1265. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Aminoglycosides were one of the first classes of broad‐spectrum antibacterial drugs clinically used to effectively combat infections. The rise of resistance to these drugs, mediated by enzymatic modification, has since compromised their utility as a treatment option, prompting intensive research into the molecular function of resistance enzymes. Here, we report the crystal structure of aminoglycoside nucleotidyltransferase ANT(4′)‐IIb in apo and tobramycin‐bound forms at a resolution of 1.6 and 2.15 Å, respectively. ANT(4′)‐IIb was discovered in the opportunistic pathogen Pseudomonas aeruginosa and conferred resistance to amikacin and tobramycin. Analysis of the ANT(4′)‐IIb structures revealed a two‐domain organization featuring a mixed β‐sheet and an α‐helical bundle. ANT(4′)‐IIb monomers form a dimer required for its enzymatic activity, as coordination of the aminoglycoside substrate relies on residues contributed by both monomers. Despite harbouring appreciable primary sequence diversity compared to previously characterized homologues, the ANT(4′)‐IIb structure demonstrates a surprising level of structural conservation highlighting the high plasticity of this general protein fold. Site‐directed mutagenesis of active site residues and kinetic analysis provides support for a catalytic mechanism similar to those of other nucleotidyltransferases. Using the molecular insights provided into this ANT(4′)‐IIb‐represented enzymatic group, we provide a hypothesis for the potential evolutionary origin of these aminoglycoside resistance determinants.  相似文献   

5.
Heterologous overexpression of genes in Escherichia coli has made it possible to obtain high titers of recombinant proteins. However, this can result in the formation of aggregated protein particles known as ‘inclusion bodies’. Protein sequestered as inclusion body is inactive and needs to be converted back to its functional form by refolding using appropriate techniques. In the current study inclusion bodies of the enzyme aminoglycoside nucleotidyl transferase (or ANT(2″)‐Ia) were first solubilized in urea and subsequently subjected to thermal cycling under controlled conditions as part of the refolding strategy. Thermal cycling led to disaggregation of the individual protein chains and simultaneously refolding the released protein molecules to their native state. The optimum condition was identified as 10–80°C thermal cycling at 3°C s?1 for 2 h. Enzyme activity measurements showed that thermal cycling under optimized conditions resulted in 257% activity recovery when compared with nonrefolded protein. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:133–139, 2017  相似文献   

6.
Aminoglycoside-2″-O-nucleotidyltransferase ANT(2″)-Ia is an aminoglycoside resistance enzyme prevalent among Gram-negative bacteria, and is one of the most common determinants of enzyme-dependant aminoglycoside-resistance. The following report outlines the use of our recently described oxidopyrylium cycloaddition/ring-opening strategy in the synthesis and profiling of a library of synthetic α-hydroxytropolones against ANT(2″)-Ia. In addition, we show that two of these synthetic constructs are capable of rescuing gentamicin activity against ANT-(2″)-Ia-expressing bacteria.  相似文献   

7.
The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5′ leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches.  相似文献   

8.
Aminoglycoside phosphotransferase(3′)‐IIIa (APH) is the enzyme with broadest substrate range among the phosphotransferases that cause resistance to aminoglycoside antibiotics. In this study, the thermodynamic characterization of interactions of APH with its ligands are done by determining dissociation constants of enzyme–substrate complexes using electron paramagnetic resonance and fluorescence spectroscopy. Metal binding studies showed that three divalent cations bind to the apo‐enzyme with low affinity. In the presence of AMPPCP, binding of the divalent cations occurs with 7‐to‐37‐fold higher affinity to three additional sites dependent on the presence and absence of different aminoglycosides. Surprisingly, when both ligands, AMPPCP and aminoglycoside, are present, the number of high affinity metal binding sites is reduced to two with a 2‐fold increase in binding affinity. The presence of divalent cations, with or without aminoglycoside present, shows only a small effect (<3‐fold) on binding affinity of the nucleotide to the enzyme. The presence of metal–nucleotide, but not nucleotide alone, increases the binding affinity of aminoglycosides to APH. Replacement of magnesium (II) with manganese (II) lowered the catalytic rates significantly while affecting the substrate selectivity of the enzyme such that the aminoglycosides with 2′‐NH2 become better substrates (higher Vmax) than those with 2′‐OH. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 801–809, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Cissampelos sympodialis Eichler is well studied and investigated for its antiasthmatic properties, but there are no data in the literature describing antibacterial properties of alkaloids isolated from this botanical species. This work reports the isolation and characterization of phanostenine obtained from roots of C. sympodialis and describes for the first time its antimicrobial and antibiotic modulatory properties. Phanostenine was first isolated from Cissampelos sympodialis and its antibacterial activities were determined. Chemical structures of the alkaloid isolate were determined using spectroscopic and chemical analyses. Phanostenine was also tested for its antibacterial activity against standard strains and clinical isolates of Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentration (MIC) was determined in a microdilution assay and for the evaluation of antibiotic resistance‐modifying activity. MIC of the antibiotics was determined in the presence or absence of phanostenine at sub‐inhibitory concentrations. The evaluation of antibacterial activity by microdilution assay showed activity for all strains with better values against S. aureus ATCC 12692 and E. coli 27 (787.69 mm ). The evaluation of aminoglycoside antibiotic resistance‐modifying activity showed reduction in the MIC of the aminoglycosides (amikacin, gentamicin and neomycin) when associated with phanostenine, MIC reduction of antibiotics ranging from 21 % to 80 %. The data demonstrated that phanostenine possesses a relevant ability to modify the antibiotic activity in vitro. We can suggest that phanostenine presents itself as a promising tool as an adjuvant for novel antibiotics formulations against bacterial resistance.  相似文献   

10.
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo‐sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water‐mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X‐ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
ArnA from Escherichia coli is a key enzyme involved in the formation of 4‐amino‐4‐deoxy‐l ‐arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram‐negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N‐ and C‐terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N10‐formyltetrahydrofolate. Here we describe the structure of the isolated N‐terminal domain of ArnA in complex with its UDP‐sugar substrate and N5‐formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.  相似文献   

12.
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments. Enterococcus durans A5‐11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5‐11a and durancin A5‐11b, which have similar antimicrobial properties. The whole durancins A5‐11a and A5‐11b, as well as their N‐ and C‐terminal fragments were synthesized, and their antifungal properties were studied. C‐terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N‐terminal peptides show activities against both bacterial and fungal strains tested. C‐terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C‐terminal fragment enhances the activity of the N‐terminal fragment in the whole bacteriocins against bacteria.

Significance and Impact of the Study

Antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments were determined. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. This work contributes to improve understanding of molecular causes of antimicrobial activities of bacteriocins and their fragments. It may be proposed that the studied peptides affect all the yeast cellular and intramembranes including cytoplasmatic reticulum and nuclear and vacuolar membranes.  相似文献   

13.
Immobilization of a thermostable D ‐xylose isomerase (EC 5.3.1.5) from Thermotoga neapolitana 5068 (TNXI) on chitin beads was accomplished via a N‐terminal fusion with a chitin‐binding domain (CBD) from a hyperthermophilic chitinase produced by Pyrococcus furiosus (PF1233) to create a fusion protein (CBD‐TNXI). The turnover numbers for glucose to fructose conversion for both unbound and immobilized CBD‐TNXI were greater than the wild‐type enzyme: kcat (min?1) was ~1,000, 3,800, and 5,800 at 80°C compared to 1,140, 10,350, and 7,000 at 90°C, for the wild‐type, unbound, and immobilized enzymes, respectively. These kcat values for the glucose to fructose isomerization measured are the highest reported to date for any XI at any temperature. Enzyme kinetic inactivation at 100°C, as determined from a bi‐phasic inactivation model, showed that the CBD‐TNXI bound to chitin had a half‐life approximately three times longer than the soluble wild‐type TNXI (19.9 hours vs. 6.8 hours, respectively). Surprisingly, the unbound soluble CBD‐TNXI had a significantly longer half‐life (56.5 hours) than the immobilized enzyme. Molecular modeling results suggest that the N‐terminal fusion impacted subunit interactions, thereby contributing to the enhanced thermostability of both the unbound and immobilized CBD‐TNXI. These interactions likely also played a role in modifying active site structure, thereby diminishing substrate‐binding affinities and generating higher turnover rates in the unbound fusion protein. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
The genes encoding aminoglycoside resistance in Enterococcus faecalis may promote collateral aminoglycoside resistance in polymicrobial wounds. We studied a total of 100 diabetic foot ulcer samples for infection and found 60 samples to be polymicrobial, 5 to be monomicrobial, and 35 samples to be culture negative. A total of 65 E. faecalis isolates were screened for six genes coding for aminoglycoside resistance, antibiotic resistance patterns, and biofilm production. Infectious Diseases Society of America/International Working Group on the Diabetic Foot system was used to classify the wound ulcers. Majority of the subjects with culture-positive wound were recommended conservative management, while 14 subjects underwent amputation. Enterococcal isolates showed higher resistance for erythromycin, tetracycline, and ciprofloxacin. Isolates from grade 3 ulcer showed higher frequency of aac(6′)-Ie-aph(2″)-Ia, while all the isolates were negative for aph(2″)-Ib, aph(2″)-Ic, and aph(2″)-Id. The isolates from grade 3 ulcers showed higher resistance to aminoglycosides as well as teicoplanin and chloramphenicol. All the 39 biofilm producers were obtained from polymicrobial wound and showed higher resistance when compared to biofilm non-producers. Higher frequency of isolates carrying aac(6′)-Ie-aph(2″)-Ia in polymicrobial community showing resistance to key antibiotics suggests widespread distribution of aminoglycoside-resistant E. faecalis and their role in worsening diabetic foot ulcers.  相似文献   

15.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

16.
The effect of the Y108V mutation of human glutathione S‐transferase P1‐1 (hGST P1‐1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 → Val resulted in a 3D‐structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H‐site) and glutathione binding site (G‐site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H‐site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (Kd ~ 0.5 μM) when compared with those of the parent compounds, K ~ 13 μM, K ~ 25 μM. The EA moiety of the conjugate binds in the H‐site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the ΔCp values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.  相似文献   

17.
Recent surveillance data on antimicrobial resistance predict the beginning of the post‐antibiotic era with pan‐resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline‐rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram‐negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin‐type) or the assembly of the 50S subunit (apidaecin‐type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112‐conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)‐carboxyfluorescein‐labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112‐conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP‐susceptible and ‐resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin‐ and oncocin‐type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
A series of novel α‐(diphenylphosphoryl)‐ and α‐(diphenylphosphorothioyl)cycloalkanone oximes have been synthesized in search for novel bioactive molecules. Their structures were characterized by various spectroscopic methods including IR, NMR (1H, 31P, 13C), mass spectrometry and single crystal X‐ray diffraction. The newly synthesized phosphorus‐containing oximes were screened for their in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium) and fungal strains (Candida albicans and Candida glabrata). The biological assays showed that all the studied compounds exhibited high antibacterial and antifungal activities at only 0.1–2.1 μg/mL. In silico molecular docking studies in FabH enzyme active site were performed in order to predict the possible interaction modes and binding energies of the drug candidates at the molecular level.  相似文献   

19.
Abstract

Complete functional annotations of proteins are essential to understand the role and mechanisms in pathogenesis. Aminoglycoside nucleotidyltransferases are the subclasses of aminoglycosides modifying enzymes conferring resistance to organisms. Insight into the structural and functional understanding of nucleotidyltransferase family protein provides vital information to combat pathogenesis. Phylogenetic analysis is employed to identify the evolutionary significance and common motif’s present among the homologs of nucleotidyltransferase family protein. Structure, sequence based approaches and molecular docking were implemented to predict the exact function of the protein. Wide distribution of the nucleotidyltransferase family protein in gram-positive and gram-negative organisms are evidenced from phylogenetic analysis. Five common motifs were present in all the homolog’s of nucleotidyltransferase family protein. Sequence-structure based functional annotations predicts that the targeted protein function as ATP-Mg dependent streptomycin adenylyltransferase. Structural comparisons and docking studies correlate well with the identified function. The complete function of nucleotidyltransferase family protein was identified as Streptomycin adenylyltransferase and it could be targeted as a potential therapeutic target to overcome antibiotic resistance.

Communicated by Ramaswamy H. Sarma

Abbreviations AAC aminoglycoside acetyltransferases

AME aminoglycoside modifying enzyme

ANT aminoglycoside nucleotidyltransferases

APH aminoglycoside phosphotransferases

ATP adenosine triphosphate

CASTp computer atlas and surface topography of proteins

DUF domains of unknown function

Glide grid-based ligand docking with energetic

HMM hidden Markov model

MAST motif alignment and search tool

MEGA molecular evolutionary genetics analysis

MEME multiple Em for motif elicitation

MSA multiple sequence alignment

NMP nucleoside monophosphate

NTP nucleoside triphosphate

NT nucleotidyltransferase

OPLS optimized potential for liquid simulation

XP extra precision

  相似文献   

20.
With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two‐component system. Two‐component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two‐component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initially present the structure of the N‐terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2‐aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号