首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spiderines are comparatively long polypeptide toxins (∼110 residues) from lynx spiders (genus Oxyopes). They are built of an N-terminal linear cationic domain (∼40 residues) and a C-terminal knottin domain (∼60 residues). The linear domain empowers spiderines with strong cytolytic activity. In the present work we report 16 novel spiderine sequences from Oxyopes takobius and Oxyopes lineatus classified into two subfamilies. Strikingly, negative selection acts on both linear and knottin domains. Genes encoding Oxyopes two-domain toxins were sequenced and found to be intronless. We further discuss a possible scenario of lynx spider modular toxin evolution.  相似文献   

2.
The solution structure of an insecticidal toxin LaIT1, a 36-residue peptide with a unique amino-acid sequence and two disulfide bonds, isolated from the venom of the scorpion Liocheles australasiae was determined by heteronuclear NMR spectroscopy. Structural similarity search showed that LaIT1 exhibits an inhibitory cystine knot (ICK)-like fold, which usually contains three or more disulfide bonds. Mutational analysis has revealed that two Arg residues of LaIT1, Arg13 and Arg15, play significant roles in insecticidal activity.  相似文献   

3.
The three-dimensional structure of huwentoxin-II (HWTX-II), an insecticidal peptide purified from the venom of spider Selenocosmia huwena with a unique disulfide bond linkage as I-III, II-V, and IV-VI, has been determined using 2D (1)H-NMR. The resulting structure of HWTX-II contains two beta-turns (C4-S7 and K24-W27) and a double-stranded antiparallel beta-sheet (W27-C29 and C34-K36). Although the C-terminal double-stranded beta-sheet cross-linked by two disulfide bonds (II-V and IV-VI in HWTX-II, II-V and III-VI in the ICK molecules) is conserved both in HWTX-II and the ICK molecules, the structure of HWTX-II is unexpected absence of the cystine knot because of its unique disulfide linkage. It suggests that HWTX-II adopts a novel scaffold different from the ICK motif that is adopted by all other spider toxin structures elucidated thus far. Furthermore, the structure of HWTX-II, which conforms to the disulfide-directed beta-hairpin (DDH) motif, not only supports the hypothesis that the ICK is a minor elaboration of the more ancestral DDH motif but also suggests that HWTX-II may have evolved from the same structural ancestor.  相似文献   

4.
Venom of Lachesana tarabaevi (Zodariidae, “ant spiders”) exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices.  相似文献   

5.
Cn12 isolated from the venom of the scorpion Centruroides noxius has 67 amino-acid residues, closely packed with four disulfide bridges. Its primary structure and disulfide bridges were determined. Cn12 is not lethal to mammals and arthropods in vivo at doses up to 100 microg per animal. Its 3D structure was determined by proton NMR using 850 distance constraints, 36 phi angles derived from 36 coupling constants obtained by two different methods, and 22 hydrogen bonds. The overall structure has a two and half turn alpha-helix (residues 24-32), three strands of antiparallel beta-sheet (residues 2-4, 37-40 and 45-48), and a type II turn (residues 41-44). The amino-acid sequence of Cn12 resembles the beta scorpion toxin class, although patch-clamp experiments showed the induction of supplementary slow inactivation of Na(+) channels in F-11 cells (mouse neuroblastoma N18TG-2 x rat DRG2), which means that it behaves more like an alpha scorpion toxin. This behaviour prompted us to analyse Na(+) channel binding sites using information from 112 Na(+) channel gene clones available in the literature, focusing on the extracytoplasmic loops of the S5-S6 transmembrane segments of domain I and the S3-S4 segments of domain IV, sites considered to be responsible for binding alpha scorpion toxins.  相似文献   

6.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.  相似文献   

7.
Conkunitzin-S1 (Conk-S1) is a 60-residue neurotoxin from the venom of the cone snail Conus striatus that interacts with voltage-gated potassium channels. Conk-S1 shares sequence homology with Kunitz-type proteins but contains only two out of the three highly conserved cysteine bridges, which are typically found in these small, basic protein modules. In this study the three-dimensional structure of Conk-S1 has been solved by multidimensional NMR spectroscopy. The solution structure of recombinant Conk-S1 shows that a Kunitz fold is present, even though one of the highly conserved disulfide cross-links is missing. Introduction of a third, homologous disulfide bond into Conk-S1 results in a functional toxin with similar affinity for Shaker potassium channels. The affinity of Conk-S1 can be enhanced by a pore mutation within the Shaker channel pore indicating an interaction of Conk-S1 with the vestibule of potassium channels.  相似文献   

8.
The three-dimensional structures of the long-chain mammalian scorpion β-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/β fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Nav channels.  相似文献   

9.
Slc11a1 is an integral membrane protein with 12 putative transmembrane domains (TMDs) and functions as a pH‐coupled divalent metal cation transporter. The conservation of three negatively charged residues in the TMD3 of Slc11 protein family implies the important role of this domain in the function of the proteins. However, aggregation of the transmembrane peptide in micelles prevents structural study of the peptide in these membrane‐mimetic environments by NMR spectroscopy. Here, we characterized the structure, position, and assembly model of Slc11a1‐TMD3 (Lys128‐Ile151) in SDS micelles by the NMR study of its Leu‐substituted peptide. It was found that the two‐site substitutions of Ala for Leu residues at positions 136 and 140 of TMD3 disrupt the aggregation without altering the secondary structure of the peptide. The Leu‐substituted peptide folds as an α‐helix spanning from Leu133 to Gly144 and embedded in the micelles. A Leu zipper is suggested to account for the self‐assembly of the wild‐type peptide in SDS micelles. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Zeng XC  Luo F  Li WX 《Peptides》2006,27(7):1745-1754
Scorpion venom is composed of a large repertoire of biologically active polypeptides. However, most of these peptides remain to be identified and characterized. In this paper, we report the identification and characterization of four novel disulfide-bridged venom peptides (named BmKBTx, BmKITx, BmKKx1 and BmKKx2, respectively) from the Chinese scorpion, Mesobuthus martensii (also named Buthus martensii Karsch). BmKBTx is composed of 58 amino acid residues and cross-linked by three disulfide bridges. The sequence of BmKBTx shows some similarities to that of the toxin, birtoxin, and its analogs. It is likely that BmKBTx is a beta-toxin active on Na+ channels, which is toxic to either insects or mammals. BmKITx is composed of 71 amino acid residues with four disulfide bridges. It is the longest venom peptide identified from M. martensii so far. BmKITx shows little sequence identity with scorpion alpha-toxins toxic to insects. It is likely that BmKITx is a new type of Na+ -channel specific toxin active on both insects and mammals. BmKKx1 contains 38 amino acid residues cross-linked by three disulfide bridges and shows 84% sequence identity with BmTx3, an inhibitor of A-type K+ channel and HERG currents. BmKKx1 has been classified as alpha-KTx-15.8. BmKKx2 is composed of 36 residues and stabilized by three disulfide bridges. BmKKx2 is a new member of the gamma-K+ -channel toxin subfamily (classified as gamma-KTx 2.2). The venoms of scorpions thus continue to provide novel toxins with potential novel actions on targets.  相似文献   

11.
The agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin receptors MC3R and MC4R found in the hypothalamus and exhibits potent orexigenic (appetite-stimulating) activity. The cysteine-rich C-terminal domain of this protein, corresponding to AGRP(87-132), contains five disulfide bonds and exhibits receptor binding affinity and antagonism equivalent to that of the full-length protein. The three-dimensional structure of this domain has been determined by 1H NMR at 800 MHz. The first 34 residues of AGRP(87-132) are well-ordered and contain a three-stranded antiparallel beta sheet, where the last two strands form a beta hairpin. The relative spatial positioning of the disulfide cross-links demonstrates that the ordered region of AGRP(87-132) adopts the inhibitor cystine knot (ICK) fold previously identified for numerous invertebrate toxins. Interestingly, this may be the first example of a mammalian protein assigned to the ICK superfamily. The hairpin's turn region presents a triplet of residues (Arg-Phe-Phe) known to be essential for melanocortin receptor binding. The structure also suggests that AGRP possesses an additional melanocortin-receptor contact region within a loop formed by the first 16 residues of its C-terminal domain. This specific region shows little sequence homology to the corresponding region of the agouti protein, which is an MC1R antagonist involved in pigmentation. Consideration of these sequence differences, along with recent experiments on mutant and chimeric melanocortin receptors, allows us to postulate that this loop in the first 16 residues of its C-terminal domain confers AGRP's distinct selectivity for MC3R and MC4R.  相似文献   

12.
The further characterization of toxin I from venom of the scorpion Centruroides sculpturatus Ewing (region, Southwestern United States) is reported. Toxin I is a single polypeptide chain of 64 amino acid residues crosslinked by four disulfide bridges. The complete amino acid sequence of toxin I was deduced from the sequence of its tryptic peptides and overlaps provided by its chymotryptic peptides. Toxin I has an amino terminal lysyl residue and a carboxyl terminal threonyl residue.The amino acid sequences of toxin I and neurotoxic variants 1, 2, and 3, likewise isolated from C. sculpturatus venom, differ at 26 positions.The sequences of toxin I from C. sculpturatus and toxins I and II from the North African scorpion, Androctonus australis Hector, are also compared.  相似文献   

13.
The minicollagens found in the nematocysts of Hydra constitute a family of invertebrate collagens with unusual properties. They share a common modular architecture with a central collagen sequence ranging from 14 to 16 Gly-X-Y repeats flanked by polyproline/hydroxyproline stretches and short terminal domains that show a conserved cysteine pattern (CXXXCXXXCXXX-CXXXCC). The minicollagen cysteine-rich domains are believed to function in a switch of the disulfide connectivity from intra- to intermolecular bonds during maturation of the capsule wall. The solution structure of the C-terminal fragment including a minicollagen cysteine-rich domain of minicollagen-1 was determined in two independent groups by 1H NMR. The corresponding peptide comprising the last 24 residues of the molecule was produced synthetically and refolded by oxidation under low protein concentrations. Both presented structures are identical in their fold and disulfide connections (Cys2-Cys18, Cys6-Cys14, and Cys10-Cys19) revealing a robust structural motif that is supposed to serve as the polymerization module of the nematocyst capsule.  相似文献   

14.
A new K(+)-channel blocking peptide identified from the scorpion venom of Tityus cambridgei (Tc1) is composed of 23 amino acid residues linked with three disulfide bridges. Tc1 is the shortest known toxin from scorpion venom that recognizes the Shaker B K(+) channels and the voltage-dependent K(+) channels in the brain. Synthetic Tc1 was produced using solid-phase synthesis, and its activity was found to be the same as that of native Tc1. The pairings of three disulfide bridges in the synthetic Tc1 were identified by NMR experiments. The NMR solution structures of Tc1 were determined by simulated annealing and energy-minimization calculations using the X-PLOR program. The results showed that Tc1 contains an alpha-helix and a 3(10)-helix at N-terminal Gly(4)-Lys(10) and a double-stranded beta-sheet at Gly(13)-Ile(16) and Arg(19)-Tyr(23), with a type I' beta-turn at Asn(17)-Gly(18). Superposition of each structure with the best structure yielded an average root mean square deviation of 0.26 +/- 0.05 A for the backbone atoms and of 1.40 +/- 0.23 A for heavy atoms in residues 2 to 23. The three-dimensional structure of Tc1 was compared with two structurally and functionally related scorpion toxins, charybdotoxin (ChTx) and noxiustoxin (NTx). We concluded that the C-terminal structure is the most important region for the blocking activity of voltage-gated (Kv-type) channels for scorpion K(+)-channel blockers. We also found that some of the residues in the larger scorpion K(+)-channel blockers (31 to 40 amino acids) are not involved in K(+)-channel blocking activity.  相似文献   

15.
A toxin with four disulfide bridges from Tityus serrulatus venom was able to compete with 125I‐kaliotoxin on rat brain synaptosomal preparations, with an IC50 of 46 nM . The obtained amino acid sequence and molecular mass are identical to the previously described butantoxin. Enzymatic cleavages in the native peptide followed by mass spectrometry peptide mapping analysis were used to determine the disulfide bridge pattern of α‐KTx12?1. Also, after the cleavage of the first six N‐terminal residues, including the unusual disulfide bridge which forms an N‐terminus ring, the potency of the cleaved peptide was found to decrease about 100 fold compared with the native protein. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The complete primary structure of a galactose-specific lectin contained in the venom of the rattlesnake, Crotalus atrox, was determined. The lectin is composed of two covalently linked, identical subunits, each consisting of 135 amino acid residues. Under physiological conditions the lectin proved to be highly aggregated. The venom lectin contained 9 half-cystines, 8 of which formed four intrasubunit disulfide bridges (Cys3-Cys14, Cys31-Cys131, Cys38-Cys133, and Cys106-Cys123), while Cys86 was involved in an intersubunit disulfide bridge. Because of the high content of disulfide bridges, the intact lectin was extremely resistant to tryptic digestion. The determined amino acid sequence was found to be homologous with those of the so-called carbohydrate recognition domains of Ca2(+)-dependent-type lectins in animal. Among them, 8 amino acid residues (Cys31, Gly69, Trp92, Pro97, Cys106, Asp120, Cys123, and Cys131) were completely conserved. Leu40, Trp67, and Trp81 were also well conserved. The rattlesnake venom lectin showed high hemagglutinating activity. These results, together with the occurrence of similar lectins in crotalid venoms, suggest that these lectins have evolved in order to make the venom a more effective weapon to capture prey animals.  相似文献   

17.
PA1b (pea albumin 1, subunit b) is a 37-amino acid cysteine-rich plant defense protein isolated from pea seeds (Pisum sativum). It induces short-term mortality in several pests, among which the cereal weevils Sitophilus sp. (Sitophilus oryzae, Sitophilus granarius, and Sitophilus zeamais) that are a major nuisance for stored cereals, all over the world. As such, PA1b is the first genuine protein phytotoxin specifically toxic to insects, which makes it a promising tool for seed weevil damage control. We have determined the 3-D solution structure of PA1b, using 2-D homonuclear proton NMR methods and molecular modeling. The primary sequence of the protein does not share similarities with other known toxins. It includes six cysteines forming three disulfide bridges. However, because of PA1b resistance to protease cleavage, conventional methods failed to establish the connectivity pattern. Our first attempts to assign the disulfide network from NOE data alone remained unsuccessful due to the tight packing of the cysteine residues within the core of the molecule. Yet, the use of ambiguous disulfide restraints within ARIA allowed us to establish that PA1b belongs to the inhibitor cystine-knot family. It exhibits the structural features that are characteristic of the knottin fold, namely, a triple-stranded antiparallel beta-sheet with a long flexible loop connecting the first to the second strand and a series of turns. A comparison of the structural properties of PA1b with that of structurally related proteins adopting a knottin fold and exhibiting a diverse range of biological activities shows that the electrostatic and lipophilic potentials at the surface of PA1b are very close to those found for the spider toxin ACTX-Hi:OB4219, thereby suggesting activity on ion channels.  相似文献   

18.
The venoms of buthid scorpions are known to contain basic, single-chain protein toxins (alpha toxins) consisting of 60-70 amino acid residues that are tightly folded by four disulfide bridges. Here we describe isolation and sequencing of three novel putative alpha toxins (AamH1-3) from the venom of the North African scorpion, Androctonus amoreuxi, and subsequent cloning of their precursor cDNAs from the same sample of venom. This experimental approach can expedite functional genomic analyses of the protein toxins from this group of venomous animals and does not require specimen sacrifice for cloning of protein toxin precursor cDNAs.  相似文献   

19.
Integrins are modular (alphabeta) heterodimeric proteins that mediate cell adhesion and convey signals across the plasma membrane. Interdomain motions play a key role in signal transduction by propagating structural changes through the molecule, thus controlling the activation state and adhesive properties of the integrin. We expressed a soluble fragment of the human integrin beta2 subunit comprising the plexin-semaphorin-integrin domain (PSI)/hybrid domain/I-EGF1 fragment and present its crystal structure at 1.8-A resolution. The structure reveals an elongated molecule with a rigid architecture stabilized by nine disulfide bridges. The PSI domain is located centrally and participates in the formation of extended interfaces with the hybrid domain and I-EGF1 domains, respectively. The hybrid domain/PSI interface involves the burial of an Arg residue, and contacts between PSI and I-EGF1 are mainly mediated by well conserved Arg and Trp residues. Conservation of key interacting residues across the various integrin beta subunits sequences suggests that our structure represents a good model for the entire integrin family. Superposition with the integrin beta3 receptor in its bent conformation suggests that an articulation point is present at the linkage between its I-EGF1 and I-EGF2 modules and underlines the importance of this region for the control of integrin-mediated cell adhesion.  相似文献   

20.
Scorpion venom contains many small polypeptide toxins, which can modulate Na(+), K(+), Cl(-), and Ca(2+) ion-channel conductance in the cell membrane. A full-length cDNA sequence encoding a novel type of K(+)-channel toxin (named BmTxKS4) was first isolated and identified from a venom gland cDNA library of Buthus martensii Karsch (BmK). The encoded precursor contains 78 amino acid residues including a putative signal peptide of 21 residues, propeptide of 11 residues, and a mature peptide of 43 residues with three disulfide bridges. BmTxKS4 shares the identical organization of disulfide bridges with all the other short-chain K(+)-channel scorpion toxins. By PCR amplification of the genomic region encoding BmTxKS4, it was shown that BmTxKS4 composed of two exons is disrupted by an intron of 87 bp inserted between the first and the second codes of Phe (F) in the encoding signal peptide region, which is completely identical with that of the characterized scorpion K(+)-channel ligands in the size, position, consensus junctions, putative branch point, and A+T content. The GST-BmTxKS4 fusion protein was successfully expressed in BL21 (DE3) and purified with affinity chromatography. About 2.5 mg purified recombinant BmTxKS4 (rBmTxKS4) protein was obtained by treating GST-BmTxKS4 with enterokinase and sephadex chromatography from 1 L bacterial culture. The electrophysiological activity of 1.0 microM rBmTxKS4 was measured and compared by whole cell patch-clamp technique. The results indicated that rBmTxKS4 reversibly inhibited the transient outward K(+) current (I(to)), delayed inward rectifier K(+) current (I(k1)), and prolonged the action potential duration of ventricular myocyte, but it has no effect on the action potential amplitude. Taken together, BmTxKS4 is a novel subfamily member of short-strain K(+)-channel scorpion toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号