首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide cyclase CyaC of Sinorhizobium meliloti is a member of class III adenylate cyclases (AC), a diverse group present in all forms of life. CyaC is membrane‐integral by a hexahelical membrane domain (6TM) with the basic topology of mammalian ACs. The 6TM domain of CyaC contains a tetra‐histidine signature that is universally present in the membrane anchors of bacterial diheme‐B succinate‐quinone oxidoreductases. Heterologous expression of cyaC imparted activity for cAMP formation from ATP to Escherichia coli, whereas guanylate cyclase activity was not detectable. Detergent solubilized and purified CyaC was a diheme‐B protein and carried a binuclear iron‐sulfur cluster. Single point mutations in the signature histidine residues caused loss of heme‐B in the membrane and loss of AC activity. Heme‐B of purified CyaC could be oxidized or reduced by ubiquinone analogs (Q0 or Q0H2). The activity of CyaC in bacterial membranes responded to oxidation or reduction by Q0 and O2, or NADH and Q0H2 respectively. We conclude that CyaC‐like membrane anchors of bacterial ACs can serve as the input site for chemical stimuli which are translated by the AC into an intracellular second messenger response.  相似文献   

2.
Manganese peroxidase (MnP) from Phlebia radiata and glucose oxidase from Aspergillus niger were co-immobilized on porous silica beads. Immobilization of both enzymes on the same carrier provided an integrated system in which H2O2 required by MnP was produced by glucose oxidase. The immobilization process resulted in a decrease of both enzymatic activities and substrate affinities. However, immobilization improved the stability of MnP against H2O2 or high pH, as well as the storage stability of this enzyme.  相似文献   

3.
Glucose oxidation by immobilized glucose oxidase (GlO) and catalase (Cat) has been investigated in batch and continuous reactions for operational studies. The macrokinetics of the process depend on coupled reaction steps and diffusion rates. The problem may be approximated by a simple pseudohomogeneous model taking into account both substrates of glucose oxidase and the intermediate reaction product H2O2. The effectiveness of both enzymes is enhanced in the coupled reaction path, the overall effectiveness nevertheless is very low. H2O2 causes the inactivation of both GlO and Cat. The rates of deactivation depend on the oxidation rates of glucose that give different quasistationary levels of H2O2 concentration. As a first approximation, the deactivation rates may be described by first-order reactions with respect to H2O2.  相似文献   

4.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   

5.
The growth rate of Lactobacillus plantarum in a complex medium with 55.6 mM glucose decreased during aerobic incubation (relative to anaerobic incubation). The decrease occurred much earlier than an increase in the rate of oxygen utilization by the culture which led to H2O2 accumulation. The concentration of H2O2 accumulated in the medium was easily tolerated by the culture and elimination of the H2O2 did not prevent the decrease in growth rate. Increased O2 utilization was accompanied by a switch in metabolism which resulted in acetate rather than lactate accumulation in aerobic cultures.Abbreviation MRSG Man, Rogosa and Sharpe (1960). Medium modified as in Materials and methods with glucose as fermentation substrate  相似文献   

6.
Among protein residues, cysteines are one of the prominent candidates to ROS‐mediated and RNS‐mediated post‐translational modifications, and hydrogen peroxide (H2O2) is the main ROS candidate for inducing cysteine oxidation. The reaction with H2O2 is not common to all cysteine residues, being their reactivity an utmost prerequisite for the sensitivity towards H2O2. Indeed, only deprotonated Cys (i.e. thiolate form, ? S?) can react with H2O2 leading to sulphenic acid formation (? SOH), which is considered as a major/central player of ROS sensing pathways. However, cysteine sulphenic acids are generally unstable because they can be further oxidized to irreversible forms (sulphinic and sulphonic acids, ? SO2H and ? SO3H, respectively), or alternatively, they can proceed towards further modifications including disulphide bond formation (? SS? ), S‐glutathionylation (? SSG) and sulphenamide formation (? SN?). To understand why and how cysteine residues undergo primary oxidation to sulphenic acid, and to explore the stability of cysteine sulphenic acids, a combination of biochemical, structural and computational studies are required. Here, we will discuss the current knowledge of the structural determinants for cysteine reactivity and sulphenic acid stability within protein microenvironments.  相似文献   

7.
Anthocyanins (AC) from Coreopsis tinctoria possesses strong antioxidant properties, while the effects of AC on cells damage induced by reactive oxygen species (ROS) in diabetes mellitus diseases progression have not been reported. The present study was carried out to evaluate the protective property of AC against cellular oxidative stress with an experimental model, H2O2‐exposed MIN6 cells. AC could reverse the decrease of cell viability induced by H2O2 and efficiently suppressed cellular ROS production and cell apoptosis. In addition, Real‐time PCR and Western blot analyses indicated that AC could protect MIN6 cells against oxidative injury through increasing the translocation of Nrf2 into nuclear, decreasing the phosphorylation level of p38 and up‐regulating the protein expression of antioxidant enzyme (SOD1, SOD2 and CAT). Thus, this study provides evidence to support the beneficial effect of AC in inhibiting MIN6 cells from H2O2‐induced oxidative injury.  相似文献   

8.
Obligate anaerobes are periodically exposed to oxygen, and it has been conjectured that on such occasions their low‐potential biochemistry will predispose them to rapid ROS formation. We sought to identify scavenging enzymes that might protect the anaerobe Bacteroides thetaiotaomicron from the H2O2 that would be formed. Genetic analysis of eight candidate enzymes revealed that four of these scavenge H2O2 in vivo: rubrerythrins 1 and 2, AhpCF, and catalase E. The rubrerythrins served as key peroxidases under anoxic conditions. However, they quickly lost activity upon aeration, and AhpCF and catalase were induced to compensate. The AhpCF is an NADH peroxidase that effectively degraded low micromolar levels of H2O2, while the catalytic cycle of catalase enabled it to quickly degrade higher concentrations that might arise from exogenous sources. Using a non‐scavenging mutant we verified that endogenous H2O2 formation was much higher in aerated B. thetaiotaomicron than in Escherichia coli. Indeed, the OxyR stress response to H2O2 was induced when B. thetaiotaomicron was aerated, and in that circumstance this response was necessary to forestall cell death. Thus aeration is a serious threat for this obligate anaerobe, and to cope it employs a set of defences that includes a repertoire of complementary scavenging enzymes.  相似文献   

9.
Co‐Co3O4/carbon nanotube/carbon foam (Co‐Co3O4/CNT/CF) nanocomposites were prepared by soaking melamine foam into a solution of Co(NO3)2·6H2O, followed by calcination in N2 and air in sequence. The obtained Co‐Co3O4/CNT/CF nanocomposites were characterized with scanning electron microscopy and cyclic voltammetry. It was found that Co3O4 nanoparticles were grown on the external of CF successfully, while CNTs were grown on the surfaces of CF in a large amount, which further improved the electrical conductivity of the. The prepared Co‐Co3O4/CNT/CF nanocomposites were then used to construct nonenzymatic sensor to detect glucose in alkaline solution. The sensor showed detection range from 1.2 μM to 2.29 mM with a detection limit of 0.4 μM (S/N =3) and a high sensitivity of 637.5 μA?1 cm?2. The developed sensor also showed an instant response, favorable reproducibility, and high selectivity. The results attest that Co‐Co3O4/CNT/CF composites have great potential in the development of nonenzymatic sensors for glucose.  相似文献   

10.
5‐Keto‐D ‐fructose is a useful starting material for the synthesis of pyrrolidine iminosugars. It can be prepared by regioselective oxidation of L ‐sorbose using pyranose 2‐oxidase (P2Ox) and O2 as a cosubstrate. As the solubility of O2 in aqueous solution is low and the affinity of P2Ox for O2 is poor, we developed a new and efficient process for the production of 5‐keto‐D ‐fructose based on engineered P2Ox from Peniophora gigantea and in situ generation of O2 from H2O2 with catalase. This kind of oxygen supply required efficient mixing of the bioreactor which was achieved by controlled feeding of H2O2 close to the impeller tip where energy dissipation rate is highest. Thus bubbling, known to affect enzyme stability, was largely avoided, and the process could be run up to 145% oxygen super‐saturation which speeds‐up P2Ox activity. Under these conditions quantitative oxidation of 180 g L?1 L ‐sorbose to 5‐keto‐D ‐fructose could be achieved within 4 h, resulting in a threefold higher overall productivity of the process compared to a process using gaseous oxygen supply. In addition, in situ generation of O2 from H2O2 lowered the oxygen demand of the process by a factor of 100 compared to gaseous oxygen supply. Biotechnol. Bioeng. 2012; 109: 2941–2945. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Introduction – Extraction and characterisation of hemicelluloses are very important for converting them into functional materials and chemicals. Objective – To develop a method for isolation of hemicelluloses from all cell walls. Methodology – Sequential steps using 90% dioxane, 80% acidic dioxane, 100% dimethyl sulphoxide and 8% NaOH were used for extraction of the hemicellulosic preparations (H1, H2, H3 and H4) from maize stem. Advanced NMR techniques were used for the analysis of native hemicelluloses. Results – Hemicelluloses with high yieldd were isolated from all cell walls, and contained arabinoxylan as the major polysaccharide. H3 was substituted by α‐l ‐arabinofuranose, α‐d ‐xylopyranose, and acetyl groups (degree of saturation = 0.12/0.09) at O‐3/O‐2 of xylan. H4 had a long continuous side chain of arabinose residues, and associated closely with non‐cellulosic glucose. The hemicelluloses formed more linkages with guaiacyl lignins, and some p‐coumaric acids built a bridge between hemicelluloses and lignin in maize stem. Conclusion – This modified method is successful for the isolation of hemicelluloses with high yields from all cell walls of maize stem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The antibacterial effect of different glucose oxidase (GOX)/glucose combinations was studied on two food-poisoning organisms, enterotoxic Escherichia coli PM 015 and Salmonella derby BP 177. Growth of E. coli in nutrient broth (NB) was clearly inhibited by 4.0 mg/ml glucose after 24 h when combined with 2.0 U/ml GOX and after 48 h when combined with 0.5 or 1.0 U/ml GOX. Salmonella derby was more resistant than E. coli, but showed clear growth inhibition only after 48 h when inoculated in tubes where 2 mg glucose/ml and 2 U GOX/ml (or 4 mg glucose/ml and 1 U GOX/ml) were combined. In order to understand if the enzyme effect on microbial growth can be attributed to hydrogen peroxide or to pH decrease as a result of the production of gluconic acid, catalase (CAT) was added to GOX/glucose system. Since CAT decomposes H2O2 to H2O and O2, the antibacterial effect was ascribed to a pH decrease as a result of gluconic acid in the system.  相似文献   

13.
A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)‐capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA‐capped CdTe QDs was highly sensitive to H2O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2O2. H2O2 and H+ (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01–5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Protein cysteine thiols are post‐translationally modified under oxidative stress conditions. Illuminated chloroplasts are one of the important sources of hydrogen peroxide (H2O2) and are highly sensitive to environmental stimuli, yet a comprehensive view of the oxidation‐sensitive chloroplast proteome is still missing. By targeting the sulfenic acid YAP1C‐trapping technology to the plastids of light‐grown Arabidopsis cells, we identified 132 putatively sulfenylated plastid proteins upon H2O2 pulse treatment. Almost half of the sulfenylated proteins are enzymes of the amino acid metabolism. Using metabolomics, we observed a reversible decrease in the levels of the amino acids Ala, Asn, Cys, Gln, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr and Val after H2O2 treatment, which is in line with an anticipated decrease in the levels of the glycolysis and tricarboxylic acid metabolites. Through the identification of an organelle‐tailored proteome, we demonstrated that the subcellular targeting of the YAP1C probe enables us to study in vivo cysteine sulfenylation at the organellar level. All in all, the identification of these oxidation events in plastids revealed that several enzymes of the amino acid metabolism rapidly undergo cysteine oxidation upon oxidative stress.  相似文献   

15.
16.
There is increasing evidence that hydrogen peroxide (H2O2) may act as a neuromodulator in the brain, as well as contributing to neurodegeneration in diseased states, such as Parkinson's disease. The ability to monitor changes in endogenous H2O2 in vivo with high temporal resolution is essential in order to further elucidate the roles of H2O2 in the central nervous system. Here, we describe the in vitro characterization of an implantable catalase-based H2O2 biosensor. The biosensor comprises two amperometric electrodes, one with catalase immobilized on the surface and one without enzyme (blank). The analytical signal is then the difference between the two electrodes. The H2O2 sensitivity of various designs was compared, and ranged from 0 to 56 ± 4 mA cm−2 M−1. The most successful design incorporated a Nafion® layer followed by a poly-o-phenylenediamine (PPD) polymer layer. Catalase was adsorbed onto the PPD layer and then cross-linked with glutaraldehyde. The ability of the biosensors to exclude interference from ascorbic acid, and other interference species found in vivo, was also tested. A variety of the catalase-based biosensor designs described here show promise for in vivo monitoring of endogenous H2O2 in the brain.  相似文献   

17.
Peroxynitrite and heme peroxidases (or heme)–H2O2–NaNO2 system are the two common ways to cause protein tyrosine nitration in vitro, but the effects of antioxidants on reducing these two pathways‐induced protein nitration and oxidation are controversial. Both nitrating systems can dose‐dependently induce triosephosphate isomerase (TIM) nitration, however, heme–H2O2–NaNO2 was less destructive to protein secondary structures and led to more nitrated tyrosine residue than 3‐morpholinosydnonimine hydrochloride (SIN‐1, a peroxynitrite donor). Both of desferrioxamine and catechin could inhibit TIM nitration induced by heme–H2O2–NaNO2 and SIN‐1 and protein oxidation induced by SIN‐1, but promoted heme–H2O2–NaNO2‐induced protein oxidation. Moreover, the antagonism of natural phenolic compounds on SIN‐1‐induced tyrosine nitration was consistent with their radical scavenging ability, but no similar consensus was found in heme–H2O2–NaNO2‐induced nitration. Our results indicated that peroxynitrite and heme–H2O2–NaNO2‐induced protein nitration was different, and the later one could be a better model for anti‐nitration compounds screening.  相似文献   

18.
《Free radical research》2013,47(1):489-497
The effect of H2O2 on the primary structure of OxyHb was studied. Upon treatment of Oxy Hb with H2O2 ([Heme]/[H2O2] =I), tryptophan and methionine residues of the /-chain were modified. Treatment of ApoHb with H2O2 resulted in the modification of histidine and methionine residues in both globin chains. Tryptophan residues were unaffected. Modification of methionine residues in both the β-chain of OxyHb and ApoHb probably results from the direct oxidation of mcthionine by H2O2. The modification of histidine residues in ApoHb may be mediated by a metal-catalyzed oxidation system comprised of H2O2 and histidine-bound iron. The H2O2-mediated modification of tryptophan in the OxyHb β-chain. however, requires the heme moiety.  相似文献   

19.
Hydrogen peroxide (H2O2) and nitric oxide (˙NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre‐treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre‐treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress. A proteomic analysis disclosed 85 leaf proteins that underwent significant quantitative variations in plants directly exposed to salt stress. A large part of these changes was not observed with salt‐stressed plants pre‐treated with either H2O2 or sodium nitroprusside (SNP; a ˙NO‐releasing chemical). We also identified several proteins undergoing changes either in their oxidation (carbonylation; 40 proteins) and/or S‐nitrosylation (49 proteins) status in response to salinity stress. Both H2O2 and SNP pre‐treatments before salinity stress alleviated salinity‐induced protein carbonylation and shifted the accumulation levels of leaf S‐nitrosylated proteins to those of unstressed control plants. Altogether, the results indicate an overlap between H2O2‐ and ˙NO‐signaling pathways in acclimation to salinity and suggest that the oxidation and S‐nitrosylation patterns of leaf proteins are specific molecular signatures of citrus plant vigour under stressful conditions.  相似文献   

20.
The electrochemistry of membrane-bound [NiFe] hydrogenase I ([NiFe]-hase I) from the hyperthermophilic bacterium Aquifex aeolicus was investigated at gold and graphite electrodes. Direct and mediated H2 oxidation were proved to be efficient in a temperature range of 25–70 °C, describing a potential window for H2 oxidation similar to that of O2-tolerant hydrogenases. Search for enhancement of current densities and enzyme stability was achieved by the use of carbon nanotube coatings. We report high catalytic currents for H2 oxidation up to 1 mA cm−2, 10 times higher than at the bare electrode. Interestingly, high stability of the direct catalytic process was observed when encapsulating A. aeolicus [NiFe]-hase I into a carboxylic functionalized single walled carbon nanotube network. This suggests a peculiar interaction between the enzyme and the electrode material. The parameters that governed the orientation of the enzyme before electron transfer were thus investigated using self-assembled-monolayer gold electrodes. No control of the orientation by the charge or the hydrophobicity of the interface was demonstrated. This behavior was explained on the basis of a structural comparison between A. aeolicus [NiFe]-hase I and Desulfovibrio fructosovorans [NiFe] hydrogenase, which revealed the absence of acidic residues and an additional loop in the environment of the [4Fe–4S] distal cluster in A. aeolicus [NiFe]-hase I. Finally, the effect of inhibitors on the direct oxidation of H2 by A. aeolicus [NiFe]-hase I encapsulated in a single walled carbon nanotube network was investigated. No inhibition by CO and tolerance toward O2 were observed. Discussion of the reasons for such tolerance was undertaken on the basis of structural comparison with hydrogenases from aerobic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号