首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to analyze the respiratory, cardiovascular, and ECG responses to acute hypoxic hypoxia, three experimental series were carried out in a randomized manner on 11 healthy, unacclimatized volunteers at rest during standardized stepwise exposure to 6000 m (PAO2 35.2 +/- 2.9 mmHg/4.7 +/- 0.4 kPa) in a low-pressure chamber a) without (control), b) with propranolol, and c) with atropine combined with propranolol. The results show that hypoxic hyperventilation and alveolar gases are not affected by activation of the sympatho-adrenal axis or by parasympathetic withdrawal. Sympathetic activity, however, increases heart rate, stroke volume (pulse pressure), estimated cardiac output and systolic blood pressure, whereas decreased parasympathetic activity increases heart rate and estimated cardiac output, but lowers stroke volume. The fall in peripheral resistance, observed during progressive hypoxia in all three groups, is thought to be due to hypoxia-induced depression of the vasomotor center. At altitude catecholamine secretion and vagal withdrawal synergistically account in the ECG for the R-R shortening, the relative Q-T lengthening, the elevation of the P wave and the ST-T flattening. Probable direct hypoxic effects on the heart are the increase in P-Q duration and the minor but still significant depression of the T wave. It is concluded that at altitude increased sympatho-adrenal and decreased parasympathetic activity is without effect on hypoxic hyperventilation, but accounts for most of the cardiovascular and ECG changes. Diminution of sympathetic activity and imminent vagotonia arising after acute ascent to 6000 m probably reflect hypoxia of the central nervous system.  相似文献   

2.
In order to distinguish the effects of beta-receptor stimulation on the ECG from other factors during short-term adjustment to hypoxic aerohypoxia, the ECG of 19 volunteers were compared during moderately acute, stepwise exposure to high altitude (6,000 m) in a low pressure chamber, once with and once without beta-receptor blockade (propranolol), and after isoprenaline inhalation at ground level. The results show that beta-receptor stimulation accounts mainly for most ECG changes during altitude exposure, i.e., for the shortening of R-R interval, the lengthening of Q-T and in particular for the ST-T flattening, the latter therefore being only an indirect sign of hypoxia. After exclusion of the catecholamines, the minor but still significant ECG changes at altitude (shortening of R-R interval, increase of P wave, prolongation of P-Q, deviation of the R vector, T wave flattening in the left precordial leads) may be attributed to other, so far undefined factors, such as cardiac hypoxia, vagal withdrawal, or increase of pulmonary resistance.  相似文献   

3.
付晓春  徐哲  陈建军 《生物磁学》2011,(24):4816-4820
目的:研究缩醛基毛冬青提取化合物R4对缺血缺氧心肌的保护作用,以便为缩醛基毛冬青提取化合物R4的临床新用途提供实验依据。方法:采用小鼠常压耐缺氧实验、夹闭气管小鼠心电消失时间、垂体后叶素所致大鼠心肌缺血模型及大鼠冠脉结扎所致的心肌缺血模型,观察缩醛基毛冬青提取化合物R4对缺血缺氧心肌的保护作用。结果:缩醛基毛冬青提取化合物R4(1.0、2.0、4.0 mg/kg)均能显著延长小鼠常压耐缺氧条件下的存活时间,延长夹闭气管小鼠心电消失时间,缩醛基毛冬青提取化合物R4(0.75、1.5和3.0 mg/kg)能拮抗垂体后叶素引起的心电图变化,并能明显降低结扎冠脉所致大鼠的心肌梗塞范围。结论:缩醛基毛冬青提取化合物R4对缺血缺氧心肌具有明显保护作用,其效应与剂量呈相关性,其机制可能是通过扩张冠脉,增加心肌的供血供氧而发挥抗心肌缺血的作用。  相似文献   

4.
ObjectiveThe objective was to investigate the anti-inflammatory effects of salidroside through the PI3K/Akt signaling pathway and its protective effects on acute hypoxia-induced myocardial injury in rats.MethodsA total of 24 healthy Sprague-Dawley male rats were selected as the experimental subjects. All rats were divided into 4 groups by using the random number table method, with 6 rats in each group. The groups included the normal control group, the salidroside group, the hypobaric hypoxia group, and the hypobaric hypoxia + salidroside group. Rats in the salidroside group were fed in the original animal laboratory and were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg. Rats in the normal control group were intragastrically administered with an equal dosage of saline. Rats in the hypobaric hypoxia + salidroside group were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg, who were fed in the hypoxic experiment module for animals. The altitude was increased to 4000 m, and the rats were kept in the module for 24 h. Rats in the hypobaric hypoxia group were intragastrically administered with an equal dosage of saline in the same environment, and the altitude was increased to 4000 m after administration. Parameters of blood gas analysis, histopathological changes in cardiac tissues, cardiac indexes, and inflammatory factors IL-6 and TNF-α levels of rats in groups were compared.Results1. The cardiac indexes of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were statistically significant (P < 0.05). 2. The results of blood gas analysis of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were significantly different (P < 0.05). 3. In the hypobaric hypoxia group, the myocardial cells of rats were arranged disorderly and shaped differently, with cases such as edema, degeneration, necrosis, nucleus pyknosis, and massive infiltration of inflammatory cells. In the hypobaric hypoxia + salidroside group, the above-mentioned pathological changes in myocardial cells were relieved. 4. Compared with the hypobaric hypoxia group, in the hypobaric hypoxia + salidroside group, the concentrations of IL-6 and TNF-α in rats decreased apparently, and the differences were statistically significant (P < 0.05).ConclusionSalidroside had the repairing and protective effects on the hypobaric hypoxia-induced myocardial injuries in rats. The application of salidroside could reduce the inflammatory responses of rats with hypobaric hypoxia-induced myocardial injuries through PI3K/Akt signaling pathway, thereby protecting the myocardial cells.  相似文献   

5.
Propranolol is the beta-blocker most widely used in the management of cardiovascular disorders. It has been proposed that propranolol may act as a "chain-breaking" antioxidant. We have directly examined the ability of propranolol to inhibit superoxide-dependent, iron-promoted cardiac membrane phospholipid peroxidation, with xanthine oxidase (XOD) as a physiologically-recognized, enzymatic superoxide generator. Our results demonstrate that propranolol not only protects cardiac-membrane lipid from peroxidative damage, but also acts as a simple, reversible XOD inhibitor, noncompetitive with xanthine substrate. Propranolol, at effective antiperoxidant and XOD-inhibitory concentrations, cannot scavenge superoxide radical. The antiperoxidative profile of propranolol resembles that of the known XOD inhibitor allopurinol, although allopurinol, a tight-binding substrate-analog competitive with xanthine, inhibits XOD in a manner mechanistically very different from that of propranolol. Furthermore, the antiperoxidative profiles of both propranolol and allopurinol do not resemble those of chain-breaking antioxidants such as alpha-tocopherol. These data, along with the tendency of propranolol to concentrate in myocardial membranes and cytosol, suggest that the observed antioxidant action of propranolol, as a consequence of XOD inhibition, could play a pharmacologic role in propranolol's cardioprotective effects.  相似文献   

6.
Various ECG characteristics are investigated in white rats subjected to acute hypobaric hypoxia on the 9th–10th day of gestation corresponding to the period of organogenesis. The hypoxia-induced changes in the ECG characteristics are different in groups with a low, middle, and high resistance to acute hypoxia.  相似文献   

7.
After acclimatization to high altitude, maximal exercise cardiac output (QT) is reduced. Possible contributing factors include 1) blood volume depletion, 2) increased blood viscosity, 3) myocardial hypoxia, 4) altered autonomic nervous system (ANS) function affecting maximal heart rate (HR), and 5) reduced flow demand from reduced muscle work capability. We tested the role of the ANS reduction of HR in this phenomenon in five normal subjects by separately blocking the sympathetic and parasympathetic arms of the ANS during maximal exercise after 2-wk acclimatization at 3,800 m to alter maximal HR. We used intravenous doses of 8.0 mg of propranolol and 0.8 mg of glycopyrrolate, respectively. At altitude, peak HR was 170 +/- 6 beats/min, reduced from 186 +/- 3 beats/min (P = 0.012) at sea level. Propranolol further reduced peak HR to 139 +/- 2 beats/min (P = 0.001), whereas glycopyrrolate increased peak HR to sea level values, 184 +/- 3 beats/min, confirming adequate dosing with each drug. In contrast, peak O(2) consumption, work rate, and QT were similar at altitude under all drug treatments [peak QT = 16.2 +/- 1.2 (control), 15.5 +/- 1.3 (propranolol), and 16.2 +/- 1.1 l/min (glycopyrrolate)]. All QT results at altitude were lower than those at sea level (20.0 +/- 1.8 l/min in air). Therefore, this study suggests that, whereas the ANS may affect HR at altitude, peak QT is unaffected by ANS blockade. We conclude that the effect of altered ANS function on HR is not the cause of the reduced maximal QT at altitude.  相似文献   

8.
We have previously shown that adult offspring exposed to a prenatal hypoxic insult leading to intrauterine growth restriction (IUGR) are more susceptible to cardiovascular pathologies. Our objectives were to evaluate the interaction between hypoxia-induced IUGR and postnatal diet in the early development of cardiovascular pathologies. Furthermore, we sought to determine whether the postnatal administration of resveratrol could prevent the development of cardiovascular disorders associated with hypoxia-induced IUGR. On day 15 of pregnancy, Sprague-Dawley rats were randomly assigned to hypoxia (11.5% oxygen), to induce IUGR, or normal oxygen (control) groups. For study A, male offspring (3 wk of age) were randomly assigned a low-fat (LF, <10% fat) or a high-fat (HF, 45% fat) diet. For study B, offspring were randomized to either HF or HF+resveratrol diets. After 9 wk, cardiac and vascular functions were evaluated. Prenatal hypoxia and HF diet were associated with an increased myocardial susceptibility to ischemia. Blood pressure, in vivo cardiac function, and ex vivo vascular function were not different among experimental groups; however, hypoxia-induced IUGR offspring had lower resting heart rates. Our results suggest that prenatal insults can enhance the susceptibility to a second hit such as myocardial ischemia, and that this phenomenon is exacerbated, in the early stages of life by nutritional stressors such as a HF diet. Supplementing HF diets with resveratrol improved cardiac tolerance to ischemia in offspring born IUGR but not in controls. Thus we conclude that the additive effect of prenatal (hypoxia-induced IUGR) and postnatal (HF diet) factors can lead to the earlier development of cardiovascular pathology in rats, and postnatal resveratrol supplementation prevented the deleterious cardiovascular effects of HF diet in offspring exposed to prenatal hypoxia.  相似文献   

9.
The present results indicate that in 3-4-weeks-old puppies propranolol induces a significant depression of cardiovascular function expressed by a decrease in heart rate, myocardial contractility, and cardiac output, and an increase in systemic vascular resistance, in doses beyond beta-blocking levels. In contrast, practolol, in the same dose range, did not induce further cardio-circulatory depression, as shown by levels of heart rate, myocardial contractility, and cardiac output similar to the values obtained with beta-blocking doses of this agent. The cardio-depressant activity observed in puppies with doses of propranolol beyond blocking levels is thought to be due to direct negative inotropic and chronotropic effects of this agent, not related to influences on beta receptor sites. Such effect not observed with practolol at doses well beyond beta-blocking levels suggests that this drug exerts a more selective influence on cardiac sympathetic beta receptors.  相似文献   

10.
P M?ller  S Loft  C Lundby  N V Olsen 《FASEB journal》2001,15(7):1181-1186
The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage. Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity to withstand oxidative stress produced by exhaustive exercise.  相似文献   

11.
F Cui  L Gao  F Yuan  ZF Dong  ZN Zhou  DD Kline  Y Zhang  DP Li 《PloS one》2012,7(7):e41656

Background

Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia.

Methodology/Principal Findings

Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats.

Conclusions/Significance

Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.  相似文献   

12.
Chronic beta-receptor blockade has been reported to inhibit right ventricular hypertrophy in rats at high altitude. If so, we wanted to determine whether beta-receptor blockade or some other drug action were involved and whether the heart, the lung vessels, or blood alterations were affected. In rats, chronic treatment with DL-propranolol (2 mg/kg ip once daily) reduced right ventricular hypertrophy and polycythemia of chronic high altitude. D-Propranolol and metoprolol did not reduce hypoxia-induced right ventricular hypertrophy or polycythemia. In isolated lungs from low-altitude rats treated chronically with DL-propranolol or with D-propranolol the pressor response to acute hypoxia was blunted. Chronic DL-propranolol blunted the acute hypoxic pressor response and angiotensin II induced vasoconstriction in lungs from high-altitude rats. Two effects of DL-propranolol treatment were seen: 1) blockade of beta 2-adrenergic receptors, which reduced the right ventricular hypertrophy of high altitude through reduction of hematocrit; and 2) a non-beta-effect, which reduced vascular responsiveness to acute hypoxia in the isolated lung preparation.  相似文献   

13.
To evaluate the contribution of catecholamines to the fasting-induced lipid mobilization prolonged or acute blockade of beta-adrenergic receptors with propranolol was applied in dogs during 72 hrs of food withdrawal. Propranolol given orally in a dose of 15 mg twice daily throughout the whole period of fasting failed to modify the increases in the plasma FFA and glycerol concentrations. The acute beta-adrenergic blockade due to i.v. injection of propranolol (0.5 mg/kg b.w.) caused marked decreases in the plasma glycerol concentration both in the dogs fasting for 24 h and 72 hrs, whereas the effects of propranolol on the plasma FFA concentration was found only in the early stage of fasting. Plasma catecholamine concentrations were enhanced significantly by the 72 hrs food withdrawal and neither prolonged nor acute propranolol administration modified significantly this effect. The fasting-induced decreases in the serum insulin concentration were more pronounced in dogs treated with propranolol. Results of this study indicate that catecholamines are involved in the control of lipolysis during short term starvation. However, under these conditions beta-adrenergic blockade did not impair FFA mobilization most probably due to an enhanced contribution of other hormones to the control of this process.  相似文献   

14.
急性低氧暴露小鼠外周血代谢组变化分析   总被引:2,自引:0,他引:2  
目的:探讨急性低氧对小鼠外周血代谢组的影响。方法:将14只小鼠随机分为正常组和低氧组。用基础饲料喂养2周后,将低氧组减压至6000m模拟高度停留8h,实验结束后,采集静脉血制备血浆待测。在核磁共振波谱仪进行^1H NMR检测,采用模式识别分析方法处理数据。结果:与正常组相比,低氧组乳酸含量明显增加,肉碱水平明显降低;脂类、丙氨酸、丙酮酸、谷氨酰胺、胆碱、牛磺酸和葡萄糖含量升高,缬氨酸、肛羟丁酸、谷氨酸、甘油、甘氨酸和丝氨酸含量下降。结论:急性低氧暴露使小鼠血浆碳水化合物、脂肪代谢和氨基酸代谢谱发生变化,表明低氧后能量代谢以及相关物质含量发生改变。  相似文献   

15.
Diuresis at altitude was thought to be the result of chemoreceptor stimulation leading to a reduction of cardiac volume overload. This hypothesis was tested in ten young, healthy subjects by infusion of almitrine (0.5 mg.kg-1 body mass within 30 min) assuming analogous sites of action, i.e. arterial chemoreceptors and pulmonary vessels, for almitrine as for hypoxic hypoxia. The results show that almitrine increases ventilation, heart rate, systolic blood pressure, central venous pressure and natriuresis, but fails to increase significantly atrial natriuretic peptide plasma concentration and diuresis. It is concluded: (1) that almitrine has similar sites of action as hypoxic hypoxia at about 5000 m, (2) that natriuresis during arterial chemoreceptor stimulation might reduce cardiac volume overload, (3) that the volume excretion hypothesis, in particular the pathways from the cardiac volume overload to the water diuresis, need, for an understanding of the hypoxia-induced diuresis, further direct investigations at altitude.  相似文献   

16.
The present study was undertaken to investigate the effectiveness of adrenergic antagonists carvedilol and propranolol on L-thyroxin-induced cardiovascular and metabolic disturbances in rats. Treatment with L-thyroxin sodium (75 mg/kg body mass, s.c., every alternate day for 3 weeks), produced a significant increase in food and water intake, body temperature, heart rate, systolic blood pressure, along with an increase in serum T3, T4, and triglyceride levels. Besides a significant reduction in body mass, serum levels of TSH and cholesterol were also reduced following L-thyroxin treatment. Carvedilol (10 mg/kg body mass, orally) and propranolol (10 mg/kg body mass, i.p.) administered daily in the third week to 2 separate groups of L-thyroxin-treated animals reversed thyroxin-induced loss in body mass and rise in body temperature, blood pressure, and heart rate. Propranolol treatment increased TSH levels and decreased T3 and T4 levels in hyperthyroid animals, whereas carvedilol did not produce any effect on thyroid hormones. Carvedilol treatment reversed thyroxin induced hypertriglyceridemia, whereas propranolol treatment had no effect. Both carvedilol and propranolol prevented decrease in cholesterol levels induced by thyroxine. Compared with normal animals, L-thyroxin-treated animals showed a state of hyperglycemia, hyperinsulinaemia, impaired glucose tolerance, and insulin resistance, as inferred from elevated fasting serum glucose and insulin levels, higher area under the curve over 120 min for glucose, and decreased insulin sensitivity index (KITT). Propranolol and carvedilol treatment significantly decreased fasting serum glucose levels. Treatment with propranolol did not alter serum insulin levels, area-under-the-curve glucose, or KITT values. However, treatment with carvedilol significantly reduced area-under-the-curve glucose, decreased fasting serum insulin levels and significantly increased KITT values. In conclusion, carvedilol appears to produce favorable effects on insulin sensitivity and glycemic control and can therefore be considered as more efficacious adjunctive treatment than propranolol in hyperthyroidism.  相似文献   

17.
Decreased maximal O2 uptake (VO2max) and stimulation of the sympathetic nervous system have been previously shown to occur at high altitude. We hypothesized that tachycardia mediated by beta-adrenergic stimulation acted to defend VO2max at high altitude. Propranolol treatment beginning before high-altitude (4,300 m) ascent reduced heart rate during maximal and submaximal exercise in six healthy men treated with propranolol (80 mg three times daily) compared with five healthy subjects receiving placebo (lactose). Compared with sea-level values, the VO2max fell on day 2 at high altitude, but the magnitude of fall was similar in the placebo and propranolol treatment groups (26 +/- 6 vs. 32 +/- 5%, P = NS) and VO2max remained similar at high altitude in both groups once treatment was discontinued. During 30 min of submaximal (80% of VO2max) exercise, propranolol-treated subjects maintained O2 uptake levels that were as large as those in placebo subjects. The maintenance of maximal or submaximal levels of O2 uptake in propranolol-treated subjects at 4,300 m could not be attributed to increased minute ventilation, arterial O2 saturation, or hemoglobin concentration. Rather, it appeared that propranolol-treated subjects maintained O2 uptake by transporting a greater proportion of the O2 uptake with each heartbeat. Thus, contrary to our hypothesis, beta-adrenergic blockade did not impair maximal or submaximal O2 uptake at high altitude due perhaps to compensatory mechanisms acting to maintain stroke volume and cardiac output.  相似文献   

18.
高原低氧免疫损伤及其干预措施的研究   总被引:1,自引:0,他引:1  
目的:探讨高原低氧损伤免疫系统的特征及其可能机制,研究高原低氧免疫损伤的干预措施。方法:测定低氧暴露不同时间小鼠免疫器官指数、外周血和免疫器官T淋巴细胞亚群的变化;观察小鼠免疫器官淋巴细胞凋亡率及小鼠肺脏和肾脏病理学改变。采用预防给药方式,研究中药组方对低氧免疫损伤小鼠的干预作用。结果:①模拟海拔8000m低氧暴露8h后,小鼠胸腺CD4+CD8+细胞数显著下降,CD4+CD8-、CD4-CD8+细胞数显著增加(P0.01);低氧暴露3d后,外周血CD4+细胞明显减少(P0.05),CD4+/CD8+比值显著降低(P0.05),胸腺CD4+CD8+细胞数进一步下降,CD4+CD8-、CD4-CD8+细胞数进一步增加,小鼠脾脏、胸腺淋巴细胞晚期凋亡和坏死率均显著增加(P0.05);低氧暴露6d后,小鼠脾指数显著性增加(P0.01);胸腺指数显著性降低(P0.01),脾CD4+、CD8+细胞数显著降低(P0.01),脾脏和胸腺淋巴细胞晚期凋亡率和坏死率进一步增加(P0.01),活细胞率显著降低(P0.01),脾脏淋巴细胞早期凋亡率显著增加(P0.01)。整个低氧暴露过程中外周血CD8+无显著性变化。②新复方党参、香杞多糖、二者联合应用均能显著增加低氧免疫损伤小鼠外周血CD3+、CD4+、脾脏CD4+的细胞水平(P0.01,P0.05),对脾脏CD8+细胞水平没有显著影响。香杞多糖及其与新复方党参联合应用均能进一步降低胸腺CD4+CD8+,进一步增加CD4+CD8-的细胞水平(P0.01),未见对CD4-CD8+细胞水平的影响;新复方党参对低氧免疫损伤小鼠胸腺没有显著性影响。结论:模拟海拔8000m低氧暴露后小鼠外周发挥免疫作用的淋巴细胞数减少可能与低氧暴露早期淋巴细胞凋亡率和坏死率增加和肺脏淋巴细胞分布增多有关。新复方党参和香杞多糖作为低氧免疫损伤干预措施,具有一定发展前景。  相似文献   

19.
Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) sildenafil would improve cardiac output, arterial oxygen saturation (SaO2), and performance during hypoxic exercise. Ten trained men performed one practice and three experimental trials at sea level (SL) and simulated high altitude (HA) of 3,874 m. Each cycling test consisted of a set-work-rate portion (55% work capacity: 1 h SL, 30 min HA) followed immediately by a time trial (10 km SL, 6 km HA). Double-blinded capsules (placebo, 50, or 100 mg) were taken 1 h before exercise in a randomly counterbalanced order. For HA, subjects also began breathing hypoxic gas (12.8% oxygen) 1 h before exercise. At SL, sildenafil had no effects on any cardiovascular or performance measures. At HA, sildenafil increased stroke volume (measured by impedance cardiography), cardiac output, and SaO2 during set-work-rate exercise. Sildenafil lowered 6-km time-trial time by 15% (P<0.05). SaO2 was also higher during the time trial (P<0.05) in response to sildenafil, despite higher work rates. Post hoc analyses revealed two subject groups, sildenafil responders and nonresponders, who improved time-trial performance by 39% (P<0.05) and 1.0%, respectively. No dose-response effects were observed. During cycling exercise in acute hypoxia, sildenafil can greatly improve cardiovascular function, SaO2, and performance for certain individuals.  相似文献   

20.
Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ also has direct effects on systemic vascular smooth muscle, including modulation of pH and membrane potential; however, the effect of AZ on pulmonary arterial smooth muscle cells (PASMCs) is unknown. Since HPV requires Ca2+ influx into PASMCs and can be modulated by pH, we hypothesized that AZ alters hypoxia-induced changes in PASMC intracellular pH (pH(i)) or Ca2+ concentration ([Ca2+](i)). Using fluorescent microscopy, we tested the effect of AZ as well as two other potent CA inhibitors, benzolamide and ethoxzolamide, which exhibit low and high membrane permeability, respectively, on hypoxia-induced responses in PASMCs. Hypoxia caused a significant increase in [Ca2+](i) but no change in pH(i). All three CA inhibitors slightly decreased basal pH(i), but only AZ caused a concentration-dependent decrease in the [Ca2+](i) response to hypoxia. AZ had no effect on the KCl-induced increase in [Ca2+](i) or membrane potential. N-methyl-AZ, a synthesized compound lacking the unsubstituted sulfonamide group required for CA inhibition, had no effect on pH(i) but inhibited hypoxia-induced Ca2+ responses. These results suggest that AZ attenuates HPV by selectively inhibiting hypoxia-induced Ca2+ responses via a mechanism independent of CA inhibition, changes in pH(i), or membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号