首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations were carried out to understand the molecular basis of the effect of ursolic acid on angiogenesis by analysing its effects on the expression of modulators of angiogenesis by HUVECs in culture. Treatment with ursolic acid increased the expression of adhesion molecules such as E-selectin, CD-31 and I-CAM, upregulated angiogenic growth factors such as VEGF and FGF-2 and their receptors and caused increase in the ratio of PGE2 to PGD2. Reversal of the effect of ursolic acid by inhibition of PI3K-Akt pathway and increase in the level of phospho Akt suggest that the ursolic acid effect is mediated through PI3K-Akt pathway.  相似文献   

2.
High levels of homocysteine induce a sustained injury on arterial endothelial cells which accelerates the development of thrombosis and atherosclerosis. Some of the described effects of homocysteine on endothelial cells are features shared with an anti-angiogenic response. Therefore, we studied the effects of homocysteine on key steps of angiogenesis using bovine aorta endothelial cells as a model. Homocysteine decreased proliferation and induced differentiation. Furthermore, 5 mM homocysteine produced strong inhibitions of matrix metalloproteinase-2 and urokinase, two proteolytic activities that play a key role in extracellular matrix re-modeling, and decreased migration and invasion, other two key steps of angiogenesis. This study demonstrates that homocysteine can inhibit several steps of the angiogenic process.  相似文献   

3.
The impairment of homocysteine metabolism has been related to several disorders and diseases. Recently, homocysteine has been shown to inhibit key steps of angiogenesis, including endothelial cell proliferation, invasion, and remodeling of the extracellular matrix. Since these are also key steps in tumor invasion and metastasis, it can be hypothesized that homocysteine can also interfere in these processes. Therefore, we studied the effects of homocysteine on tumor proliferation and invasion, as well as on urokinase, a key extracellular matrix-degrading protease, using a model human tumor cell line. This study demonstrates that, in fact, homocysteine inhibits HT-1080 proliferation and invasion, and is a potent inhibitor of tumor cell urokinase expression.  相似文献   

4.
The authors have previously isolated and purified ursolic acid from heather flowers (Calluna vulgarts). This terpene was found to inhibit HL-60 leukaemic cell proliferation and arachidonic acid oxidative metabolism in various cell species. The effects of ursolic acid and its analogues on soybean 15-lipoxygenase activity and on the proliferation of a human gastric tumour cell line (HGT), have been assessed. These triterpenes inhibited soybean 15-lipoxygenase at its optimal activity (pH 9). The proliferation ofHGT was decreased in a dose-dependent manner. At 20 muM the rank order is: ursolic acid > uvaol > oleanolic acid > methyl ursolate. The carboxylic group at the C(28) position of ursolic acid appears to be implicated in the inhibition of both lipoxygenase activity and cell proliferation. Thus methylation of this group decreases these two inhibitory properties. Oleanolic acid, which differs by the position of one methyl group (C(20) instead of C(19)) is less inhibitory than ursolic acid. The lipophilicity of the terpene is also implicated since uvaol appears to be more inhibitory than methyl ursolate.  相似文献   

5.
Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGF-beta), a multifunctional cytokine which is involved in extracellular matrix modulation, has a major role in the pathogenesis and progression of fibrotic diseases. We now report the effects of ursolic acid on TGF-beta1 receptor binding and TGF-beta1-induced cellular functions in vitro. Ursolic acid inhibited [(125)I]-TGF-beta1 receptor binding to Balb/c 3T3 mouse fibroblasts with an IC(50) value of 6.9+/-0.8 microM. Ursolic acid dose-dependently recovered reduced proliferation of Minc Mv1Lu cells in the presence of 5 nM of TGF-beta1 and attenuated TGF-beta1-induced collagen synthesis and production in human fibroblasts. Molecular dynamics simulations suggest that ursolic acid may interact with the hydrophobic region of the dimeric interface and thereby inhibit the binding of TGF-beta1 to its receptor. All these findings taken together show that ursolic acid functions as an antagonist for TGF-beta1. This is the first report to show that a small molecule can inhibit TGF-beta1 receptor binding and influence functions of TGF-beta1.  相似文献   

6.
Homocysteine thiolactone is a highly reactive homocysteine derivative that can react easily with proteins. Protein homocysteinylation has been suggested as a possible mechanism underlying the pathological consequences of impaired homocysteine metabolism. Homocysteine inhibits key steps of angiogenesis and tumor invasion. It can be hypothesized that homocysteine thiolactone could mimic the described anti-angiogenic and anti-invasive effects of homocysteine. Therefore, we studied the effects of homocysteine thiolactone on different key steps of angiogenesis and tumor invasion, using model endothelial and tumor cell lines. This study demonstrates that homocysteine thiolactone, in high contrast to homocysteine, is not an anti-angiogenic compound. Furthermore, our results suggest that homocysteine thiolactone could behave as a pro-angiogenic compound.  相似文献   

7.
熊果酸(ursolic acid)是广泛存在于自然界植物中的一种五环三萜类化合物,具有广泛的生物学活性,主要经肝脏代谢。传统临床治疗中熊果酸多用于抗炎、抗病毒、调节免疫功能以及保肝治疗等。近年来的研究表明,在体外和体内实验中,熊果酸能够对不同肿瘤细胞产生杀伤作用,抑制恶性肿瘤组织的生长,具有广谱的抗肿瘤活性。此外,熊果酸联合放化疗能够提高肿瘤细胞对治疗的敏感性,产生辅助增强放化疗疗效的作用,并且在放疗中可保护受照射机体的正常组织,促进免疫机能的恢复。熊果酸的抗肿瘤作用机制与下调促肿瘤生长、侵袭和转移相关基因的水平,增强凋亡基因的表达有关,并且能够通过调节多种细胞信号转导通路,杀灭肿瘤细胞,延缓肿瘤组织生长。同时,熊果酸可影响肿瘤细胞周期的分布,导致细胞的G1/S期阻滞,从而抑制肿瘤细胞的有丝分裂,诱导细胞凋亡。因此,熊果酸是一种极具潜力的天然抗肿瘤药物。本文对熊果酸在肿瘤治疗中的研究结果进行整合,阐述了熊果酸的抗肿瘤分子机制及其疗效,为熊果酸今后在临床中的进一步应用提供指导思路。  相似文献   

8.
Zhang W  Hong D  Zhou Y  Zhang Y  Shen Q  Li JY  Hu LH  Li J 《Biochimica et biophysica acta》2006,1760(10):1505-1512
Protein tyrosine phosphatase 1B (PTP1B) is a key element in the negative regulation of the insulin signaling pathway and may play an important role in diabetes and obesity. We identified ursolic acid, a natural pentacyclic triterpenoid that occurs widely in traditional Chinese medicinal herbs, as an inhibitor of PTP1B by screening an extract library of the traditional Chinese medicinal herbs used a diabetes clinic. By modifying urosolic acid, we designed and synthesized a derivative with a K(i) of 283 nM. As competitive inhibitors of PTP1B, ursolic acid and its derivative also inhibit T-cell protein tyrosine phosphatase and src homology phosphatase-2 but not leucocyte antigen-related phosphatase or protein tyrosine phosphatase alpha and epsilon, which are all possibly involved in the insulin pathway. The ursolic acid derivative enhanced insulin receptor phosphorylation in CHO/hIR cells and stimulate glucose uptake in L6 myotubes.  相似文献   

9.
In this study, we confirmed that ursolic acid, a plant triterpenoid, activates peroxisome proliferator-activated receptor (PPAR)-α in vitro. Surface plasmon resonance and time-resolved fluorescence resonance energy transfer analyses do not show direct binding of ursolic acid to the ligand-binding domain of PPAR-α; however, ursolic acid enhances the binding of PPAR-α to the peroxisome proliferator response element in PPAR-α-responsive genes, alters the expression of key genes in lipid metabolism, significantly reducing intracellular triglyceride and cholesterol concentrations in hepatocytes. Thus, ursolic acid is a PPAR-α agonist that regulates the expression of lipid metabolism genes, but it is not a direct ligand of PPAR-α.  相似文献   

10.
In addition to the known antitumour effects of ursolic acid (UA), increasing evidence indicates that this molecule plays a role in cardiac protection. In this study, the effects of ursolic acid on the heart in mice treated with doxorubicin (DOX) were assessed. The results showed that ursolic acid improved left ventrical fractional shortening (LVFS) and left ventrical ejection fraction (LVEF) of the heart, increased nitrogen oxide (NO) levels, inhibited reactive oxygen species (ROS) production and decreased cardiac apoptosis in mice treated with doxorubicin. Mechanistically, ursolic acid increased AKT and endothelial nitric‐oxide synthase (eNOS) phosphorylation levels, and enhanced eNOS expression, while inhibiting doxorubicin induced eNOS uncoupling through NADPH oxidase 4 (NOX4) down‐regulation. These effects of ursolic acid resulted in heart protection from doxorubicin‐induced injury. Therefore, ursolic acid may be considered a potential therapeutic agent for doxorubicin‐associated cardiac toxicity in clinical practice.  相似文献   

11.
Angiogenesis is a physiological procedure during which the new blood vessels develop from the pre-existing vessels. Uncontrolled angiogenesis is related to various diseases including cancers. Clinical inhibition of undesired angiogenesis is still under investigation. We utilized nicotinic acid, a family member of the B-vitamin niacin (vitamin B3) that has been used in the prevention and treatment of atherosclerosis or other lipid-metabolic disorders, to treat human umbilical vein endothelial cells (HUVECs) and chick chorioallantoic membrane (CAM), and investigated its influence on angiogenesis in vitro and in vivo. We found that nicotinic acid could obviously inhibit HUVEC proliferation induced by vascular endothelial growth factor. Both the in vitro and in vivo assays showed that nicotinic acid could significantly inhibit the process of angiogenesis. To further investigate the mechanism underlying the effect of nicotinic acid on angiogenesis, we found that it might function via regulating the cytoskeleton arrangements, especially the rearranging the structures of F-actin and paxillin. In summary, we discovered that nicotinic acid could obviously inhibit the process of angiogenesis by changing the angiogenesis factor expression levels and inducing the cytoskeleton rearrangement of endothelial cells.  相似文献   

12.

Aims

Ursolic acid has recently been reported to increase both atrial natriuretic peptide (ANP) secretion and mechanical dynamics in rabbit atria.

Main methods

The present study was designed to clarify the regulatory effects of ursolic acid on the β-adrenergic or muscarinic receptor-mediated changes in ANP secretory and contractile function allowing measurement of atrial dynamics such as pulse pressure, stroke volume, and cAMP efflux in isolated perfused beating rabbit atria.

Key findings

Pretreatment with ursolic acid significantly attenuated the isoproterenol (β-adrenergic agonist)-induced decrease in ANP secretion and increases in cAMP levels and atrial dynamics. Interestingly, ursolic acid concentration-dependently accentuated the acetylcholine-induced increase in ANP secretion and decrease in pulse pressure in the presence of isoproterenol (p < 0.001). These findings indicate that acetylcholine-induced increase in ANP secretion is potentiated by ursolic acid; furthermore, acetylcholine-induced decrease in atrial dynamics is also potentiated by ursolic acid, suggesting that ursolic acid regulates muscarinic receptor-mediated secretory and contractile responses in perfused beating rabbit atria.

Significance

This implicates for the beneficial effects of ursolic acid in the regulation of cardiovascular and body fluid homeostasis.  相似文献   

13.
The plant pentacyclic triterpenoids, oleanolic and ursolic acids, inhibit the growth and survival of many bacteria, particularly Gram-positive species, including pathogenic ones. The effect of these compounds on the facultative human pathogen Listeria monocytogenes was examined. Both acids affected cell morphology and enhanced autolysis of the bacterial cells. Autolysis of isolated cell walls was inhibited by oleanolic acid, but the inhibitory activity of ursolic acid was less pronounced. Both compounds inhibited peptidoglycan turnover and quantitatively affected the profile of muropeptides obtained after digestion of peptidoglycan with mutanolysin. These results suggest that peptidoglycan metabolism is a cellular target of oleanolic and ursolic acids.  相似文献   

14.
Oxaliplatin is a key drug in chemotherapy of colorectal cancer (CRC). However, its efficacy is unsatisfied due to drug resistance of cancer cells. In this study, we tested whether a natural agent, ursolic acid, was able to enhance the efficacy of oxaliplatin for CRC. Four CRC cell lines including SW480, SW620, LoVo, and RKO were used as in vitro models, and a SW620 xenograft mouse model was used in further in vivo study. We found that ursolic acid inhibited proliferation and induced apoptosis of all four cells and enhanced the cytotoxicity of oxaliplatin. This effect was associated with down-regulation of Bcl-xL, Bcl-2, survivin, activation of caspase-3, 8, 9, and inhibition of KRAS expression and BRAF, MEK1/2, ERK1/2, p-38, JNK, AKT, IKKα, IκBα, and p65 phosphorylation of the MAPK, PI3K/AKT, and NF-κB signaling pathways. The two agents also showed synergistic effects against tumor growth in vivo. In addition, ursolic acid restored liver function and body weight of the mice treated with oxaliplatin. Thus, we concluded that ursolic acid could enhance the therapeutic effects of oxaliplatin against CRC both in vitro and in vivo, which offers an effective strategy to minimize the burden of oxaliplatin-induced adverse events and provides the groundwork for a new clinical strategy to treat CRC.  相似文献   

15.
Here we studied the cellular mechanisms of ursolic acid's anti-bladder cancer ability by focusing on endoplasmic reticulum stress (ER stress) signaling. We show that ursolic acid induces a significant ER stress response in cultured human bladder cancer T24 cells. ER stress inhibitor salubrinal, or PERK silencing, diminishes ursolic acid-induced anti-T24 cell effects. Salubrinal inhibits ursolic acid-induced CHOP expression, Bim ER accumulation and caspase-3 activation in T24 cells. Ursolic acid induces IRE1–TRAF2–ASK1 signaling complex formation to activate pro-apoptotic ASK1–JNK signaling. We suggest that ER stress contributes to ursolic acid's effects against bladder cancer cells.  相似文献   

16.
Naturally occurring angiogenesis inhibitors can inhibit different steps of the angiogenic process, such as endothelial cell migration. However, the mechanisms underlying this inhibition have not been elucidated. We demonstrate that migration of human umbilical vein endothelial cells induced by the potent endothelial cell chemoattractant sphingosine 1-phosphate is refractory to inhibition by well-characterized angiogenesis inhibitors such as endostatin and plasminogen-related protein-B. Our data support the contention that for effective blockage of tumor-induced angiogenesis, antagonists of both G protein-coupled receptor signaling and receptor tyrosine kinase signaling must be combined.  相似文献   

17.
建立了HPLC-DAD法测定血满草中熊果酸和齐墩果酸含量,并进行方法学考察。采用HPLC-DAD进行分析,fusion-RP C18柱(4.6 mm×250 mm,4μm),甲醇-0.2%磷酸水溶液(90∶10)为流动相,检测波长210 nm,体积流量1.0 mL/min。同时采用微波辅助提取、回流提取、索氏提取、冷浸提取、超声提取五种方法对血满草中熊果酸和齐墩果酸含量进行测定并比较不同方法所得结果的差异,还比较了血满草不同部位中熊果酸和齐墩果酸的含量差异。测定结果表明熊果酸进样量在3.6~8.4μg范围内,齐墩果酸进样量在3.2~16μg范围内,呈良好线性关系。血满草中熊果酸和齐墩果酸平均回收率分别为98.3%和101.4%(n=5),相对标准偏差分别为1.13%和0.72%(n=5)。五种方法比较得出索氏提取得熊果酸和齐墩果酸含量最高;血满草花中熊果酸和齐墩果酸含量最高,而根中含量最低。该方法使血满草中熊果酸和齐墩果酸达到基线分离,操作简便,结果稳定可靠。  相似文献   

18.
Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, α-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references.  相似文献   

19.
Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, α-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号