首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, some single-layer and double-layer transdermal drug delivery systems (TDDSs) with different functional and non-functional acrylic pressure-sensitive adhesives (PSAs) were prepared. For this purpose, fentanyl as a drug was used. The effects of PSAs type, single-layer and double-layer TDDSs on skin permeation and in vitro drug release from devices were evaluated using a hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices such as peel strength and tack values were obtained as well. It was found that TDDS with –COOH functional PSA showed the lowest steady-state flux. Double-layer TDDS displayed a constant flux up to 72 h. In double- and single-layer devices after 1 and 3 h, respectively, drug release followed Higuchi’s kinetic model. Formulations with the highest percentage of –COOH functional PSA have displayed the lowest flux. The double-layer TDDSs with non-functional PSA demonstrated the suitable skin permeation rate close to Duragesic® TDDS and suitable adhesion properties.  相似文献   

2.
Viscoelastic properties of skin samples were measured in three types of mice (tight skin, Tsk, control and Mov-13), that are known to differ with regard to content of type I collagen. The experimental design used uniaxial stretching and measured the creep response and the complex compliance. The creep response was measured directly. The complex compliance was determined using a Wiener-Volterra constitutive model for each sample. The models were calculated from data obtained by applying a stress input having a pseudo-Gaussian waveform and measuring the strain response. The storage compliance of Mov-13 and control skin were similar and were greater than Tsk (p<0.001). The loss compliance of each group was significantly different (p<0.001) from each other group; Tsk had the lowest and control had the highest loss compliance. The phase angle of the Mov-13 and Tsk were similar and were less than the controls (p<0.001). The creep response was fit with a linear viscoelastic model. None of the parameters in the creep model differed between groups. The results indicate that gene-targeted and mutant animals have soft tissue mechanical phenotypes that differ in complex ways. Caution should be exercised when using such animals as models to explore the role of specific constituents on tissue properties.  相似文献   

3.
The main issue in the development of transdermal patches made of poly(ethyl acrylate, methyl methacrylate) (Eudragit NE 40D, PMM) is the shrinkage phenomenon during the spreading of the latex onto the release liner. To solve this problem, the latex is usually freeze-dried and then re-dissolved in an organic solvent (method 1). To simplify the production process, we prepared an adhesive matrix by adding to the commercial PMM latex a plasticizer and an additive (anti-shrinkage agent) that avoids the shrinkage of the water dispersion spread onto the release liner (method 2). In some cases the active ingredient itself, such as potassium diclofenac (DK) and nicotine (NT), works as anti-shrinkage agent. In this work, the effects of the preparation method, types and concentrations of the plasticizer (triacetin and tributyl citrate) on the adhesive properties of the transdermal patches were investigated. The adhesive properties of the prepared patch were determined by texture analysis, peel adhesion test and shear adhesion. The PMM/plasticizer interactions were evaluated by ATR-FTIR spectroscopy. Furthermore, the in vitro skin permeation profiles of DK and NT released from the patch were determined by Franz cell method. Generally speaking, the variables that mainly modify the adhesive properties are the concentration and type of the plasticizer. The skin permeation profiles of DK and NT from the patch prepared by method 2 overlapped with those obtained with the commercial products. The results underline that the PMM latex can be used conveniently in the development of transdermal patches.  相似文献   

4.
<正> Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature's solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength.  相似文献   

5.
Physical properties (roughness, gloss, mechanical, surface topography and adhesive) of a bioadhesive film for the transdermal delivery of drugs and its interactions with a skin model surface were studied. Roughness is a measurement of the small-scale variations in the height of a physical surface. No significant differences in Ra between the “x” and “y” dimensions for both the skin model and patch were detected, due to uniformity in their production. Scanning electron microscope pictures showed small particles projected from the film. Those particles resulted in increasing roughness and surface area. For the patch, gloss values measured at 20° were 6.0 ± 0.9 and at 60°, 32.2 ± 2.2 gloss units, respectively, indicating a semi-gloss material. Concerning the mechanical properties, the tensile strength of the film resulted four- to sevenfold greater than the peel force from the model skin used, indicating the suitability of the film for skin application. The adhesion to skin model depended on the amount of water used for film application and on the elapsed time between film application and removal. Finally, the model skin that was invented by Charkoudian can be used as an alternative to costly and highly variable human skin substrates since it possesses human topography.  相似文献   

6.
Cell adhesion mediated by type I cadherins involves homophilic "trans" interactions that are thought to be brought about by a strand exchange mechanism involving the N-terminal extracellular domain. Here, we present the high-resolution crystal structure of the N-terminal two domains of human E-cadherin. Comparison of this structure with other type I cadherin structures reveals features that are likely to be critical to facilitate dimerization by strand exchange as well as dimer flexibility. We integrate this structural knowledge to provide a model for type I cadherin adhesive interactions. Intra-molecular docking of the conserved N-terminal "adhesion arm" into the acceptor pocket in monomeric E-cadherin appears largely identical to inter-molecular docking of the adhesion arm in adhesive trans dimers. A strained conformation of the adhesion arm in the monomer, however, may create an equilibrium between "open" and "closed" forms that primes the cadherin for formation of adhesive interactions, which are then stabilized by additional dimer-specific contacts. By contrast, in type II cadherins, strain in the adhesion arm appears absent and a much larger surface area is involved in trans adhesion, which may compensate the activation energy required to peel off the intra-molecularly docked arm. It seems that evolution has selected slightly different adhesion mechanisms for type I and type II cadherins.  相似文献   

7.
The intermolecular interactions and phase structures of thermally processed wheat proteins with glycerol and water as plasticizers were studied by dynamic mechanical analysis and solid-state high-resolution NMR spectroscopy. The results of phase structures at scales of molecular level to tens of nanometers were correlated with the mechanical properties of the materials. The strong hydrogen bonding intermolecular interactions between the components in wheat proteins and the plasticizers resulted in a significant change in molecular motions of wheat protein materials. The plasticized systems, however, still presented a wide distribution of chain mobility at a scale from the molecular level to 20-30 nm, and the plasticizing effect was different for each wheat protein system. High protein content systems tended to be plasticized relatively easily especially when lipid content is high, but the existence of residual starch would require more plasticizers to reach a similar level of chain mobility. On a scale of 20-30 nm, plasticized vital wheat gluten (WG) and the deamidated wheat proteins (WP-I) were heterogeneous with each component exhibiting its individual mobility, whereas the plasticized insoluble protein system (WP-II) with poor mechanical properties was homogeneous. Both WG and WP-I systems showed excellent mechanical polymeric properties in tensile strength and elasticity despite the heterogeneity. The strong intermolecular hydrogen bonding interactions and soluble protein components in the materials could provide an adhesion among different components and act as a continuous matrix in the systems. Therefore, these materials displayed excellent mechanical properties via coordination effects among different components.  相似文献   

8.
9.
The receptor-mediated adhesion of cells to ligand-coated surfaces is important in many physiological and biotechnological processes. Previously, we measured the detachment of antibody-coated spheres from counter-antibody- and protein A-coated substrates using a radial-flow detachment assay and were able to relate mechanical adhesion strength to chemical binding affinity (Kuo and Lauffenburger, Biophys. J. 65:2191-2200 (1993)). In this paper, we use "adhesive dynamics" to simulate the detachment of antibody-coated hard spheres from a ligand-coated substrate. We modeled the antibody-ligand (either counter-antibody or protein A) bonds as adhesive springs. In the simulation as in the experiments, beads attach to the substrate under static conditions. Flow is then initiated, and detachment is measured by the significant displacement of previously bound particles. The model can simulate the effects of many parameters on cell detachment, including hydrodynamic stresses, receptor number, ligand density, reaction rates between receptor and ligand, and stiffness and reactive compliance of the adhesive springs. The simulations are compared with experimental detachment data, thus relating measured bead adhesion strength to molecular properties of the adhesion molecules. The simulations accurately recreated the logarithmic dependence of adhesion strength on affinity of receptor-ligand recognition, which was seen in experiments and predicted by analytic theory. In addition, we find the value of the reactive compliance, the parameter which relates the strain of a bond to its rate of breakage, that gives the best match between theory and experiment to be 0.01. Finally, we analyzed the effect of varying either the forward or reverse rate constants as different ways to achieve the same affinity, and showed that adhesion strength depends uniquely on the equilibrium affinity, not on the kinetics of binding. Given that attachment is independent of affinity, detachment and attachment are distinct adhesive phenomena.  相似文献   

10.
A hot-melt, pressure-sensitive adhesive (HMPSA) based on styrene–isoprene–styrene was prepared, and its compatibility with various transdermal penetration enhancers was investigated. The effect of penetration enhancers on the adhesion properties of HMPSA was also studied. A drug-in-adhesive patch was formulated using α-asarone as a model drug, and penetration enhancers were screened by an in vitro transdermal study across excised pig skin. The pharmacokinetics in rabbits was also studied. The results show that HMPSA was miscible with most penetration enhancers (azone, menthol, isopropyl myristate, 1-methyl-pyrrolidinone, N,N-dimethylformamide, oleic acid), apart from propylene glycol. Penetration enhancers had a plasticizer-like effect that decreased the peel strength and shear strength of HMPSA. A combination of 1% oleic acid and 4% menthol had the highest in vitro penetration rate and was selected for patch preparation. The patch formulation was optimized by replacing some of the plasticizer by penetration enhancers to achieve good adhesion and effective transdermal flux. The final patch showed a high efficiency, with a relative bioavailability of 1,494%. This suggests that HMPSA may be a promising material for drug-delivery patches.  相似文献   

11.
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.  相似文献   

12.
Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 10(8) blastospores ml(-1). That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13 degrees in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces.  相似文献   

13.
Wang C  Han W  Tang X  Zhang H 《AAPS PharmSciTech》2012,13(2):556-567
We prepared pressure-sensitive adhesive (PSA) patches based on styrene-isoprene-styrene (SIS) thermoplastic elastomer using hot-melt coating method. The liquid paraffine is added in the PSA matrices as a plasticizer to moderate the PSA properties. Three drugs, methyl salicylate, capsaicin, and diphenhydramine hydrochloride are selected as model drugs. The Fourier transform infrared spectroscopy, differential scanning calorimetry test, and wide-angle X-ray diffraction test indicate a good compatibility between drugs and matrices. Peppas equation is used to describe drug release profile. Different drug-matrix absorption, as indicative of drug-matrix interaction, accounts for the variation in release profiles of different drugs. Furthermore, atomic force microscopy and rheological studies of the PSA samples are performed to investigate the effect of SIS structure and plasticizer of PSA on drug release behaviors. For methyl salicylate and capsaicin, drug diffusion in the PSA matrices is the main factor controlled by the release kinetic constant k. The high [SI] diblock content and high plasticizer amount in matrix provide the PSA with a homogeneous and soften microstructure, resulting in a high diffusion rate. But for water-soluble drugs such as diphenhydramine hydrochloride, the release rate is governed by water penetration with the competition from diffusion mechanisms.  相似文献   

14.
The polysialylation of neural cell adhesion molecule (NCAM) evolved in vertebrates to carry out biological functions related to changes in cell position and morphology. Many of these effects involve the attenuation of cell interactions that are not mediated through NCAM's own adhesion properties. A proposed mechanism for this global effect on cell interaction is the steric inhibition of membrane-membrane apposition based solely on polysialic acid (PSA) biophysical properties. However, it remains possible that the intrinsic binding or signaling properties of the NCAM polypeptide are also involved. To help resolve this issue, this study uses a quantitative cell detachment assay together with cells engineered to display different adhesion receptors together with a variety of polysialylated NCAM polypeptide isoforms and functional domain deletion mutations. The results obtained indicate that regulation by PSA occurs with adhesion receptors as diverse as an IgCAM, a cadherin and an integrin, and does not require NCAM functional domains other than those minimally required for polysialylation. These findings are most consistent with the cell apposition mechanism for PSA action, as this model predicts that the inhibitory effects of PSA-NCAM on cell adhesion should be independent of the nature of the adhesion system and of any intrinsic binding or signaling properties of the NCAM polypeptide itself.  相似文献   

15.
Corneodesmosomes, the modified desmosomes of the uppermost layers of the epidermis, play an important role in corneocyte cohesion. Corneodesmosin is a secreted glycoprotein located in the corneodesmosomal core and covalently linked to the cornified envelope of corneocytes. Its glycine- and serine-rich NH(2)-terminal domain may fold to give structural motifs similar to the glycine loops described in epidermal cytokeratins and loricrin and proposed to display adhesive properties. A chimeric protein comprising human corneodesmosin linked to the transmembrane and cytoplasmic domains of mouse E-cadherin was expressed in mouse fibroblasts to test the ability of corneodesmosin to promote cell-cell adhesion. Classic aggregation assays indicated that corneodesmosin mediates homophilic cell aggregation. Moreover, Ca(2+) depletion showed a moderate effect on aggregation. To assess the involvement of the glycine loop domain in adhesion, full-length corneodesmosin, corneodesmosin lacking this domain, or this domain alone were expressed as glutathione S-transferase fusion proteins and tested for protein-protein interactions by overlay binding assays. The results confirmed that corneodesmosin presents homophilic interactions and indicated that its NH(2)-terminal glycine loop domain is sufficient but not strictly necessary to promote binding. Altogether, these results provide the first experimental evidence for the adhesive properties of corneodesmosin and for the involvement of its glycine loop domain in adhesion.  相似文献   

16.
In Alzheimer's disease, the typical clinical symptoms and the pathological findings are restricted to the nervous system. Nevertheless, like in some other neurologic-metabolic disorders, several alterations are found in peripheral tissues. The aim of this study was to examine whether cellular properties which can be studied in vitro on skin fibroblast cultures obtained from Alzheimer's disease patients differ from those of age-matched controls. Down syndrome patients were also included, since the same neuropathological findings are present in nearly 100% of Down syndrome patients. Since Alzheimer's disease is an age-related disorder, we examined the growth characteristics of skin fibroblast cultures. The in vitro senescence of cultured fibroblasts is widely accepted as a model for in vivo ageing. Normal growth properties were found. We can conclude that there is no premature ageing in Alzheimer's disease nor in Down syndrome and that the abnormalities found in peripheral tissues are related to the disease itself. The beta amyloid precursor protein (beta APP) has been shown to have adhesive interactions. We therefore investigated several parameters of adhesion in the skin fibroblast cultures: adhesion to a fibronectin coat, adhesion to extracellular matrix of Alzheimer's disease cultures and semi-quantification of adhesion-related molecules (beta 1-integrin, cell surface proteoglycans, extracellular matrix proteoglycans, extracellular matrix fibronectin). No significant difference was found in the parameters examined.  相似文献   

17.
To gain fundamental information regarding the molecular basis of endothelial cell adhesive interactions during vascular formation, we have cloned and characterized a unique cell adhesion molecule. This molecule, named endothelial cell-selective adhesion molecule (ESAM), is a new member of the immunoglobulin superfamily. The conceptual protein encoded by cDNA clones consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Northern blot analysis showed ESAM to be selectively expressed in cultured human and murine vascular endothelial cells and revealed high level expression in lung and heart and low level expression in kidney and skin. In situ hybridization analysis indicated that ESAM is primarily expressed in the developing vasculature of the embryo in an endothelial cell-restricted pattern. Epitope-tagged ESAM was shown to co-localize with cadherins and catenins in cell-cell junctions. In aggregation assays employing ESAM-expressing Chinese hamster ovary cells, this novel molecule was shown to mediate cell-cell adhesion through homophilic interactions. The endothelial cell-selective expression of this immunoglobulin-like adhesion molecule coupled with its in vitro functional profile strongly suggests a role in cell-cell interactions that is critical for vascular development or function.  相似文献   

18.
Both the increasing and decreasing contents of vitamin A in rats induced a lowering of cell adhesion in the skin multilayer epithelium, and that of their packing density. However, the same stimulus did not alter cell adhesion in the small intestinal monolayer epithelium. The data obtained show that vitamin A may serve as a factor modulating intercellular adhesive interactions with tissue specificity.  相似文献   

19.
Initial adhesion of fungi to plasticized polyvinyl chloride (pPVC) may determine subsequent colonization and biodeterioration processes. The deteriogenic fungus Aureobasidium pullulans was used to investigate the physicochemical nature of adhesion to both unplasticized PVC (uPVC) and pPVC containing the plasticizers dioctyl phthalate (DOP) and dioctyl adipate (DOA). A quantitative adhesion assay using image analysis identified fundamental differences in the mechanism of adhesion of A. pullulans blastospores to these substrata. Adhesion to pPVC was greater than that to uPVC by a maximum of 280% after a 4-h incubation with 108 blastospores ml−1. That plasticizers enhance adhesion to PVC was confirmed by incorporating a dispersion of both DOA and DOP into the blastospore suspension. Adhesion to uPVC was increased by up to 308% in the presence of the dispersed plasticizers. Hydrophobic interactions were found to dominate adhesion to uPVC because (i) a strong positive correlation was observed between substratum hydrophobicity (measured by using a dynamic contact angle analyzer) and adhesion to a range of unplasticized polymers including uPVC, and (ii) neither the pH nor the electrolyte concentration of the suspension buffer, both of which influence electrostatic interactions, affected adhesion to uPVC. In contrast, adhesion to pPVC is principally controlled by electrostatic interactions. Enhanced adhesion to pPVC occurred despite a relative reduction of 13° in the water contact angle of pPVC compared to that of uPVC. Furthermore, adhesion to pPVC was strongly dependent on both the pH and electrolyte concentration of the suspension medium, reaching maximum levels at pH 8 and with an electrolyte concentration of 10 mM NaCl. Plasticization with DOP and DOA therefore increases adhesion of A. pullulans blastospores to pPVC through an interaction mediated by electrostatic forces.  相似文献   

20.
Leukocyte recruitment from the bloodstream to surrounding tissues is an essential component of the immune response. Capture of blood-borne leukocytes onto vascular endothelium proceeds via a two-step mechanism, with each step mediated by a distinct receptor-ligand pair. Cells first transiently adhere, or "roll" (via interactions between selectins and sialyl-Lewis-x), and then firmly adhere to the vascular wall (via interactions between integrins and ICAM-1). We have reported that a computational method called adhesive dynamics (AD) accurately reproduces the fine-scale dynamics of selectin-mediated rolling. This paper extends the use of AD simulations to model the dynamics of cell adhesion when two classes of receptors are simultaneously active: one class (selectins or selectin ligands) with weakly adhesive properties, and the other (integrins) with strongly adhesive properties. AD simulations predict synergistic functions of the two receptors in mediating adhesion. At a fixed density of surface ICAM-1, increasing selectin densities lead to greater pause times and an increased tendency toward firm adhesion; thus, selectins mechanistically facilitate firm adhesion mediated by integrins. Conversely, at a fixed density of surface selectin, increasing ICAM-1 densities lead to greater pause times and an increased tendency to firm adhesion. We present this relationship in a two-receptor state diagram, a map that relates the densities and properties of adhesion molecules to various adhesive behaviors that they code, such as rolling or firm adhesion. We also present a state diagram for neutrophil activation, which relates beta(2)-integrin density and integrin-ICAM-1 kinetic on rate to neutrophil adhesive behavior. The predictions of two-receptor adhesive dynamics are validated by the ability of the model to reproduce in vivo neutrophil rolling velocities from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号