首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.  相似文献   

2.
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.  相似文献   

3.
Recently, we have shown that small cell lung cancer (SCLC) is dependent on activation of Hedgehog signaling, an embryonic pathway implicated in development, morphogenesis and the regulation of stem cell fates. These findings form the framework for an emerging view of cancer as a process of aberrant organogenesis in which progenitor/ stem cells escape dependence on niche signaling through mutation in genes such as Ptch, or through persistent activation of progenitor cell pathways. Interestingly, the normally quiescent airway epithelial compartment uses the Hh pathway to repopulate itself when challenged by injury. How Hh signaling works to promote the malignant phenotype promises to be as important biologically as the promise of Hh pathway inhibitors are clinically.  相似文献   

4.
The intracellular signaling controlling neural stem/progenitor cell (NSC) self-renewal and neuronal/glial differentiation is not fully understood. We show here that Shp2, an introcellular tyrosine phosphatase with two SH2 domains, plays a critical role in NSC activities. Conditional deletion of Shp2 in neural progenitor cells mediated by Nestin-Cre resulted in early postnatal lethality, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone. In vitro analyses suggest that Shp2 mediates basic fibroblast growth factor signals in stimulating self-renewing proliferation of NSCs, partly through control of Bmi-1 expression. Furthermore, Shp2 regulates cell fate decisions, by promoting neurogenesis while suppressing astrogliogenesis, through reciprocal regulation of the Erk and Stat3 signaling pathways. Together, these results identify Shp2 as a critical signaling molecule in coordinated regulation of progenitor cell proliferation and neuronal/astroglial cell differentiation.  相似文献   

5.
Recently, we have shown that small cell lung cancer (SCLC) is dependent on activation of the Hedgehog signaling, an embryonic pathway implicated in development, morphogenesis and the regulation of stem cell fates. These findings form the framework for an emerging view of cancer as a process of aberrant organogenesis in which progenitor/ stem cells escape dependence on niche signaling through mutation in genes such as Ptch, or through persistent activation of progenitor cell pathways. Interestingly, the normally quiescent airway epithelial compartment uses the Hh pathway to repopulate itself when challenged by injury. How Hh signaling works to promote the malignant phenotype promises to be as important biologically as the promise of Hh pathway inhibitors are clinically.

Key words

Cancer, Hedgehog signaling, Morphogenesis, Stem cells  相似文献   

6.
Cardiac chamber morphogenesis requires the coordinated growth of both cardiac muscle and endocardial cell lineages. Paracrine growth factors may modulate the coordinated cellular specification and differentiation during cardiac chamber morphogenesis, as suggested by the essential role of endothelial-derived growth factors, neuregulin-1, and insulin-like growth factor-I. Using the whole mouse embryo culture system for delivery of diffusible factors into the cardiac chamber, neuregulin-1 was shown to promote trabeculation of the ventricular wall. Another factor, insulin-like growth factor-I, had no apparent effect by itself. Combined treatment with neuregulin-1 and insulin-like growth factor-I strongly induced DNA synthesis of cardiomyocytes and expansion of both the ventricular compact zone and the atrioventricular cushions leading to chamber growth and maturation. In cultured cardiomyocytes, combined neuregulin-1 and insulin-like growth factor-I also had a synergistic effect to promote DNA synthesis and cellular growth, which were prevented by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. Adenoviral delivery of dominant negative Rac1, which acts downstream of phosphatidylinositol 3-kinase, blocked the effect of combined neuregulin-1/insulin-like growth factor-I treatment. These studies support the concept that the interaction of neuregulin-1 and insulin-like growth factor-I pathways plays an important role in coordinating cardiac chamber morphogenesis and may occur through convergent activation of phosphatidylinositol 3-kinase.  相似文献   

7.
不对称分裂是干/祖细胞发育分化中的基本过程,膜相关蛋白Numb在其中发挥重要作用.Numb极性分布于细胞一侧,在干/祖细胞有丝分裂时不对等分配至两个子代细胞,使子代细胞产生不同分化命运.如一个保持在干/祖细胞状态,而另一个发育为神经元,这一过程主要通过抑制Notch信号通路发挥作用.近年在哺乳动物中的研究中发现,高强度Notch信号又能够反馈抑制Numb活性.Numb具有维持神经干/祖细胞增殖与促进分化的双重作用,Numb的命运决定作用还与Shh信号通路和p53蛋白等相关.另外,Numb参与调控细胞的粘连、迁移以及神经元轴突的分支与延长.本文主要对Numb在果蝇及哺乳动物神经干/祖细胞中的定位以及其在决定细胞命运和分化中的调控作用进行综述.  相似文献   

8.
Throughout development and adult life the vasculature exhibits a remarkably dynamic capacity for growth and repair. The vasculature also plays a pivotal role in the execution of other diverse biologic processes, such as the provisioning of early hematopoietic stem cells during embryonic development or the regulation of vascular tone and blood pressure. Adding to this importance, from an anatomical perspective, the vasculature is clearly an omnipresent organ, with few areas of the body that it does not penetrate. Given these impressive characteristics, it is perhaps to be expected that the vasculature should require, or at least be associated with, a ready supply of stem and progenitor cells. However, somewhat surprisingly, it is only now just beginning to be broadly appreciated that the vasculature plays host to a range of vessel-resident stem and progenitor cells. The possibility that these vessel-resident cells are implicated in processes as diverse as tumor vascularization and adaptive vascular remodeling appears likely, and several exciting avenues for clinical translation are already under investigation. This review explores the various stem and progenitor cell populations that are resident in the microvasculature, endothelium, and vessel walls and vessel-resident cells capable of phenotypic transformation.  相似文献   

9.
In developing and self-renewing tissues, terminally differentiated (TD) cell types are typically specified through the actions of multistage cell lineages. Such lineages commonly include a stem cell and multiple progenitor (transit-amplifying) cell stages, which ultimately give rise to TD cells. As the tissue reaches a tightly controlled steady-state size, cells at different lineage stages assume distinct spatial locations within the tissue. Although tissue stratification appears to be genetically specified, the underlying mechanisms that direct tissue lamination are not yet completely understood. Herein, we use modeling and simulations to explore several potential mechanisms that can be utilized to create stratification during developmental or regenerative growth in general systems and in the model system, the olfactory epithelium of mouse. Our results show that tissue stratification can be generated and maintained through controlling spatial distribution of diffusive signaling molecules that regulate the proliferation of each cell type within the lineage. The ability of feedback molecules to stratify a tissue is dependent on a low TD death rate: high death rates decrease tissue lamination. Regulation of the cell cycle lengths of stem cells by feedback signals can lead to transient accumulation of stem cells near the base and apex of tissue.  相似文献   

10.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

11.
CXCR4–SDF-1 Signalling, Locomotion, Chemotaxis and Adhesion   总被引:23,自引:0,他引:23  
Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential to this process.  相似文献   

12.
13.
The uppermost cells of the root and shoot apical meristems are considered as stem cells. They are similar, in many features, to the stem cells of animals. But, unlike animals, the stem cells can repeatedly arise in plants during morphogenesis and regeneration or in tissue culture from actively dividing or differentiated cells. When the stem cells are removed, they can be repeatedly restored from the actively dividing cells. The maintenance of the population of stem cells is determined by interaction between the stem cells and actively dividing cells located below according to the feedback principle. The protein synthesized in the stem cells determines how the lower located cells affect the stem cells. Specificity of stem cell identification in plants is discussed.  相似文献   

14.
Ivanov VB 《Ontogenez》2003,34(4):253-261
The uppermost cells of the root and shoot apical meristems are considered as stem cells. They are similar, in many features, to the stem cells of animals. But, unlike animals, the stem cells can repeatedly arise in plants during morphogenesis and regeneration or in tissue culture from actively dividing or differentiated cells. When the stem cells are removed, they can be repeatedly restored from the actively dividing cells. The maintenance of the population of stem cells is determined by interaction between the stem cells and actively dividing cells located below according to the feedback principle. The protein synthesized in the stem cells determines how the lower located cells affect the stem cells. Specificity of stem cell identification in plants is discussed.  相似文献   

15.
Stem cell biology has the potential to yield new therapies, new insights into disease, and a clearer understanding of tissue formation and maintenance. However, much of what we know about many stem cells is based upon experiments performed in culture. Stem cells sometimes exhibit critical differences in their properties or regulation between the culture and in vivo environments. Though cell lines with stem cell properties can be derived from the long-term culture of diverse tissues, it is not clear whether cells with similar properties exist in vivo. If the goal is to use differentiated cells for therapy or drug screening, it may not matter whether these stem cells exist in vivo. However, to understand tissue development/maintenance or the role of stem cells in disease, it is important to characterize progenitor function in vivo to evaluate physiological significance.  相似文献   

16.
ABSTRACT: BACKGROUND: Spatial signal transduction plays a vital role in many intracellular processes such as eukaryotic chemotaxis, polarity generation, cell division. Furthermore it is being increasingly realized that the spatial dimension to signalling may play an important role in other apparently purely temporal signal transduction processes. It is being recognized that a conceptual basis for studying spatial signal transduction in signalling networks is necessary. RESULTS: In this work we examine spatial signal transduction in a series of standard motifs/networks. These networks include coherent and incoherent feedforward, positive and negative feedback, cyclic motifs, monostable switches, bistable switches and negative feedback oscillators. In all these cases, the driving signal has spatial variation. For each network we consider two cases, one where all elements are essentially non diffusible, and the other where one of the network elements may be highly diffusible. A careful analysis of steady state signal transduction provides many insights into the behaviour of all these modules. While in the non-diffusible case for the most part, spatial signalling reflects the temporal signalling behaviour, in the diffusible cases, we see significant differences between spatial and temporal signalling characteristics. Our results demonstrate that the presence of diffusible elements in the networks provides important constraints and capabilities for signalling. CONCLUSIONS: Our results provide a systematic basis for understanding spatial signalling in networks and the role of diffusible elements therein. This provides many insights into the signal transduction capabilities and constraints in such networks and suggests ways in which cellular signalling and information processing is organized to conform to or bypass those constraints. It also provides a framework for starting to understand the organization and regulation of spatial signal transduction in individual processes.  相似文献   

17.
An idea underlying a great deal of research and discussion in plant cell and developmental biology is that the spatial regulation of cell division plays a key role in plant development. In this article, the role of cell division in two aspects of leaf development is analysed: morphogenesis (leaf initiation, growth, and the generation of leaf shape) and histogenesis (the differentiation of leaf cells to form the various cell types that make up a functional leaf). The point of view that emerges from this analysis is that the rate and pattern of cell division is important for leaf development, but does not dictate leaf size, shape, or cell fate.  相似文献   

18.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

19.
20.
Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN) is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/β-catenin pathway through the phosphorylation of GSK3-β. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/β-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号