首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eimeria mivati was described as a new species of chicken coccidia in 1964 by Edgar and Seibold, but recently some British workers have relegated its status to that of a variety of Eimeria acervulina. Using strains supplied by Dr. Edgar, we have prepared lines of E. acervulina resistant to methyl benzoquate, sulfaquinoxaline and robenidine and a line of E. mivati resistant to methyl benzoquate. Genetic transfer of resistance between the various lines of E. acervulina to produce doubly-resistant coccidia has been demonstrated, but no such transfer could be obtained between E. mivati resistant to methyl benzoquate and the resistant lines of E. acervulina. Although some immunological relationship between E. acervulina and E. mivati has been demonstrated, we conclude that this failure of the 2 organisms to interbreed lends support to the status of E. mivati as a distinct species.  相似文献   

2.
Medication of broilers with arprinocid [MK-302, 9-(2-chloro-6-fluorbenzyl adenine)] had 3 distinct effects on oocysts; (1) the number of oocysts produced was decreased, (2) fewer of the oocysts sporulated, and (3) those oocysts which did sporulate were less infective than those from unmedicated birds. The drug level necessary to prevent passage of oocysts depended on the species and strain of coccidia. To essentially eliminate oocyst production (less than 5% of controls) required medication with the following levels of arprinocid: 70 ppm with Eimeria maxima; 60 ppm with E. mivati, E. E. necatrix, and E. brunetti; and 50 ppm with E. tenella. With E. acervulina, oocysts were completely eliminated by 60 ppm of arprinocid with one field strain but were still numerous at 70 ppm with a second field strain. Oocysts recovered from birds on medication often failed to sporulate. No sporulation was seen at drug levels of 30 ppm or above with E. maxima and E. mivati. The level of arpinocid required to prevent sporulation with other species depended on the strain being studied, but varied from 30 ppm to 70 ppm. The oocysts of E. acervulina, E. mivati, E. tenella, and E. brunetti recovered from medicated birds that subsequently sporulated, were less infective when inoculated into susceptible birds, than oocysts from unmedicated birds. Oocysts from low medication level with E. necatrix (30 ppm) and E. maxima (10 ppm), once sporulated, were as infective as oocysts from unmedicated control birds, even though the numbers produced were less. No differences were detected in the time oocysts were produced between medicated and unmedicated birds infected with E. acervulina, E. maxima, E. brunetti, and E. tenella.  相似文献   

3.
The roles of major histocompatibility complex (MHC) and non-MHC-linked genes in the genetic control of disease susceptibility and the development of protective immunity to Eimeria acervulina infection were investigated in six 15I5-B congenic and four different strains of chickens characterized for the MHC. When oocyst production was assessed, wide variations were noted following initial and challenge infections among the strains of chickens tested. In general, 15.N-21, 15.P-13, B21, B19, SC, and FP chickens were protected following challenge infection whereas 15I5, 15.P-19, 15.7-2, and 15.6-2 chickens were not. Strains of chickens sharing a same B haplotype on different genetic backgrounds did not show comparable levels of protection. These results lead to the view that non-MHC-linked genes have a profound influence on the outcome of the host response to E. acervulina infection. Chickens infected twice at 1-month intervals by an oral inoculation with E. acervulina developed both coccidial-specific antibody and T-cell responses. E. acervulina infected chickens showed T-cell-mediated immune responses to the intact sporozoites as well as to recombinant proteins, p130 of sporozoites and p150 of merozoites. Both p130 and p150 antigens have been identified and characterized previously. Sera obtained from all infected chickens recognized the p150 merozoite protein, but not the p130 sporozoite protein in immunoblots. In general, the cellular response, but not the antibody response to the p150 recombinant surface merozoite antigen correlated with the degree of protection following the challenge infection. These results suggest that the strains of chickens having improved protection against challenge infection demonstrate higher T-cell responses to the recombinant surface merozoite protein, p150.  相似文献   

4.
Sporulated oocysts of the protozoan Eimeria acervulina were subjected to 0, 10, 15, 20, or 30 krad of X-irradiation and inoculated into susceptible outbred chickens to determine if radioattenuated coccidia could induce protection against parasite challenge. Irradiation treatment had an appreciable dose-dependent effect on parasite development. Insignificant numbers of oocysts were produced by chickens inoculated with parasites that had been exposed to greater than 10 krad X-irradiation. Sporozoites exposed to 15 or 20 krad irradiation conferred significant protection against the appearance of intestinal lesions after parasite challenge. Sporozoites subjected to the highest dose level (30 krad) did not produce any significant level of protection. To investigate this phenomenon further and assess intracellular parasite development, susceptible outbred strains of chickens were administered either nonirradiated (0 krad) oocysts or oocysts that were exposed to an optimal dose (15 krad) or a high dose (30 krad) of X-irradiation. Immunofluorescence staining of tissue sections from each treatment group at various intervals after the initial administration of irradiated parasites indicated that sporozoites exposed to 15 krad irradiation were as capable of invading the host intestinal epithelium as nonirradiated sporozoites. However, at 48, 60, 72, and 96 hr, there was a marked reduction in merogonic development in groups receiving irradiated sporozoites compared to those inoculated with nonirradiated parasites. The latter parasites underwent profuse merogonic development; in contrast, irradiated parasites demonstrated little (15 krad) or no (30 krad) merogonic development. These results suggest that induction of a protective immune response occurs during a critical period early in intracellular development of E. acervulina.  相似文献   

5.
Coccidiosis is a major parasitic disease of poultry industry and an ideal vaccine should induce long-lasting cross-species protective immunity. Broiler chickens (Cobb 500) were inoculated with single, double or triple injections of a synthetic peptide (derived from sequences of Eimeria acervulina and Eimeria tenella antigens) homogenized in Freund's complete and incomplete adjuvants. The immune responses to the vaccine were assessed by evaluation of antibody and lymphocyte proliferation responses, and the degree of resistance of vaccinated chickens to challenge with sporulated oocysts of E. acervulina or E. tenella determined by comparison of their oocyst output with those of control chickens. The results indicated that the synthetic peptide vaccine induced a high level of antibody and cellular responses associated with partial cross-species protection against challenge with sporulated oocysts of E. acervulina or E. tenella.  相似文献   

6.
P L Long  B J Millard 《Parasitology》1979,79(3):451-457
The immunological differences known to exist between laboratory strains of Eimeria maxima was confirmed. Protection against challenge with different strains or field isolates of the species could be achieved by including small numbers (25 oocysts) of each in the immunizing inoculum. Similar protection was obtained when 4 distinct populations which were allowed to interbreed were used in the immunizing inoculum. This hybrid mixture of E. maxima was used to immunize chickens against challenge with 7 new isolates of E. maxima from poultry houses in different parts of England. The results show that although immunological differences exist within E. maxima good protection against many strains of this species may be achieved by initial infection with the hybrid mixture of E. maxima.  相似文献   

7.
8.
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.  相似文献   

9.
Genes encoding antigens of Eimeria acervulina were cloned from cDNA expression libraries prepared from the sporozoite and merozoite stages in order to examine humoral and cellular immune responses to this protozoan parasite. Two clones expressing surface antigens were characterized by DNA hybridization studies to identify homologous genomic DNA fragments. The proteins they encode were identified by 125I-labeling, immunoblotting, immunofluorescence, and T-cell activation experiments. One, designated cSZ-1, encodes a 130-kDa beta-galactosidase fusion protein which represents a portion of a p240/p160 immunodominant sporozoite surface antigen. Immunofluorescence studies using anti-cSZ-1 sera and live or 1% paraformaldehyde-fixed E. acervulina sporozoites have confirmed this surface locale. Purified cSZ-1 fusion protein, which is not recognized by sera from E. acervulina-infected chickens, induced the activation of immune T lymphocytes in vitro. Another cDNA clone, designated cMZ-8, gives rise to a 150-kDa fusion protein and encodes a portion of a p250 immunodominant merozoite surface antigen. This was established by immunoblotting of 125I-labeled merozoite proteins with anti-cMZ-8 sera and immunofluorescence staining of live and 1% paraformaldehyde-fixed E. acervulina merozoites. Purified cMZ-8 is recognized by sera from E. acervulina-infected chickens and induces a significant activation of immune T lymphocytes in vitro.  相似文献   

10.
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.  相似文献   

11.
12.
Young chickens inoculated with multiple low doses of mixed oocysts of Eimeria acervulina, E. brunetti, and E. maxima had a high level of resistance to reinfection with a mixed challenge dose on Day 28, Day 84, or Day 140. Immunity was enhanced when the number of immunizing doses was increased from three to four. Resistance was also high in birds maintained on a proprietary mixture of amprolium, ethopabate, and sulphaquinoxaline (Pancoxin-Merck, Sharp and Dohme Ltd.) during immunization, although immunity to E. acervulina was lower in these birds. Oocyst production was lower in birds given mixed infections as compared with that of birds given pure infections with similar doses of oocysts. Competition between species did not inhibit the development of immunity in birds given low doses of mixed oocysts.  相似文献   

13.
The obligate intracellular apicomplexan parasite Eimeria tenella, one of seven species of Eimeria that infect chickens, elicits protective cell-mediated immunity against challenge infection. For this reason, recombinant E. tenella parasites could be utilised as an effective vaccine vehicle for expressing foreign antigens and inducing immunity against heterologous intracellular microbes. A stable line of E. tenella expressing foreign genes is a prerequisite, and in this work an in vivo stable transfection system has been developed for this parasite using restriction enzyme-mediated integration (REMI). Two transgenic populations of E. tenella have been obtained that express YFP-YFP constitutively throughout the parasite life cycle. Southern blotting and plasmid rescue analyses show that the introduced exogenous DNA was integrated at random into the parasite genome. Although the life cycle of the transgenic populations was delayed by at least 12 h and the output of oocysts was reduced 4-fold relative to the parental BJ strain of E. tenella, the transgenic parasites were sufficiently immunogenic to protect chickens against challenge with either transgenic or parental parasites. These results are encouraging for the development of transgenic E. tenella as a vaccine vector and for more detailed investigation of the biology of the genus Eimeria.  相似文献   

14.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

15.
Here construction of an attenuated mutant of an avian pathogenic Escherichia coli serovar O78 using an allelic exchange procedure is described. The mutant AESN1331, which carries a deletion in the crp gene, lost tryptophan deaminase activity and therefore lacked the ability to produce indole. The mutant strain additionally lacked the ability to adsorb Congo red, no longer fermented sugars other than glucose and L-arabinose, did not harbor four known virulence-associated genes (iss, tsh, cvaA, papC), and was susceptible to many antimicrobials, with the exception of nalidixic acid. The lethal dose (LD(50) value) of the mutant strain on intravenous challenge in chickens was approximately 10-fold higher than that of the parent strain. Additionally, the mutant strain was rapidly eliminated from chickens, being detected in the respiratory tract only on the first day post-inoculation by fine spray. Administration of the mutant strain via various routes such as spray and eye drop for chickens, as well as in ovo inoculation for embryonated egg, evoked an effective immune response that protected against a virulent wild-type E. coli O78 strain. Specifically, after immunization with the mutant strain, chickens challenged intravenously with an E. coli O78 strain exhibited decreases in mortality, clinical scores, organ lesion scores, and recovery of the challenge strain from organs compared to non-immunized chickens. These findings suggest that AESN1331 is a suitable candidate for a live vaccine strain to protect chickens from colibacillosis caused by avian E. coli O78.  相似文献   

16.
Eimeria tenella: immunogenicity of arrested sporozoites in chickens   总被引:3,自引:0,他引:3  
Groups of chickens were medicated with the anticoccidial drug, decoquinate, and starting 1 day after this medication they were given daily inoculations of either 1 X 10(4) (Experiment 1) or 1 X 10(5) (Experiment 2) oocysts of a decoquinate-sensitive strain of Eimeria tenella. This assured the presence of large numbers of drug-inhibited sporozoites in the cecal tissues. The immunity arising from the presence of these inhibited sporozoites was assessed by challenging the medicated chickens with a 2.5 X 10(5) oocysts of a decoquinate-resistant strain of E. tenella. The response to challenge was assessed by weight gain, the severity of cecal lesions, hematocrits, and cecal oocyst numbers. The inhibited sporozoites promoted little (if any) immunity judged by clinical signs of disease. However, judged by body weight changes after challenge, the presence of inhibited sporozoites provided substantial protection against the body-weight-depressing effects of the challenge dose. These findings emphasize the importance of stage-specific antigen expression in Eimeria spp. infections and support the notion that immunogenicity is associated with tropic stages of the parasite.  相似文献   

17.
The role of avian lymphokines as nonspecific immunomodulators of host immunity against the intracellular parasite Eimeria was investigated. Prophylactic treatment of normal chickens with crude cell-free supernatants obtained from JMV-1 culture, concanavalin A (Con A)-stimulated normal spleen cells, or sporozoite-stimulated immune T cells prior to inoculation with E. tenella or E. acervulina conferred significant protection. These crude cell-free culture supernatants also inhibited intracellular development of eimerian parasites in vitro. Avian macrophages pretreated with these supernatant preparations showed inhibitory activity against Eimeria. This inhibitory activity could not be ascribed to anti-Eimeria antibody, complement, or cell-free Marek's disease virus and was therefore considered to be due to immunomodulating lymphokines present in the culture supernatants. These results suggest that JMV-1-transformed T lymphoblastoid cells, immune T lymphocytes, and Con A-stimulated normal spleen cells secrete lymphokines that can enhance host immunity in a nonspecific manner and implicate cell-mediated immunity as a major mechanism of the protective host immune response against eimerian infections.  相似文献   

18.
This study aimed to investigate whether suboptimal incubation (SI) temperature in weeks 1 and 3 of layer embryo incubation affects their development and post-hatch adaptive capacity during infectious challenges, by using Eimeria as a model infection under normal and immediately after more challenging environmental conditions of 72 h heat exposure. Eggs (n = 160 per treatment) were incubated at optimal (OI = 37.8°C continuously) or suboptimal eggshell temperature (36.7°C, 37.8°C and 38.9°C in weeks 1, 2 and 3, respectively). At day 33 of age, half the chickens of each incubation treatment were exposed to 72 h heat (35°C), whereas the other half remained under control conditions (21°C). At day 36 of age, all chickens were inoculated with 1 ml of a phosphate buffer saline solution containing 25 000 sporulated Eimeria acervulina oocysts/ml. The adaptive response to E. acervulina was measured by BW gain and FI from days 0 to 3 post infection (p.i.), days 3 to 5 p.i. and days 5 to 7 p.i., and by oocyst production (days 4 and 7 p.i.) and lesion scores in the duodenum (day 3, 4 and 7 p.i.). Our results demonstrated that SI temperatures in weeks 1 and 3 of incubation resulted in a reduction in yolk-free BW, chick length and navel condition. Moreover, SI temperature appeared to reduce the adaptive capacity to E. acervulina. This was demonstrated by tendencies to lower FI (P = 0.07) and BW gain (P = 0.08), more duodenal lesions (P = 0.09) and higher oocyst production (P = 0.02) after inoculation of E. acervulina. Higher lesion scores and faecal oocyst numbers were especially found when suboptimal incubation was combined with heat exposure preceding the infection. In conclusion, SI layer chickens tend to be less able to cope with an infectious challenge post hatch.  相似文献   

19.
A cDNA encoding a recombinant Eimeria acervulina antigen, designated EAMZp30-47, that contains an epitope shared among several surface and rhoptry proteins of merozoites was characterized. The respective parasite proteins are between 30 and 47 kDa as revealed by immunostaining of nitrocellulose membrane containing extracts of 125I-labeled merozoites. As indicated by immunofluorescence and immunoelectron microscopic staining, the reactive epitope was localized to both the surface membrane and the internal rhoptries of this asexual stage of the parasite. The recombinant beta-galactosidase fusion protein EAMZp30-47 is 130 kDa, thus representing 15 kDa or 30-50% of the respective parasite protein. Purified EAMZp30-47 stimulates T cells from E. acervulina-immune inbred chickens, but is not recognized by immune chicken serum, suggesting that T cell and not B cell epitopes recognized by the host immune system during a natural infection are present on the recombinant protein. Northern and Southern blot hybridization experiments indicated that expression of EAMZp30-47 is restricted to the merozoite stage of the parasite and the gene occurs as a single copy sequence within the genome.  相似文献   

20.
Two experiments were conducted to test the effects of a dietary zinc amino acid complex (Zn-AA) and an anticoccidial drug on Eimeria acervulina or Eimeria tenella infections. In each experiment, 288 day-old Three-Yellow-Chickens were used in a 2 x 3 factorial experimental design. Six groups were arranged randomly to receive three levels of Zn-AA (0, 40, or 80 mg/kg) alone or with salinomycin (60 mg/kg). Additionally an uninfected group was set as negative control. At the age of 21 days birds in Exp. 1 were inoculated with 3 x 10(4) sporulated E. acervulina oocysts, while birds in Exp. 2 were inoculated with 1.5 x 10(4) sporulated E. tenella oocysts. In Exp. 1, E. acervulina did not suppress growth performance significantly, but in groups without salinomycin it significantly reduced serum carotenoid levels on day 7 after inoculation and body and shank pigmentation on day 42. Salinomycin medication maintained serum carotenoids and visual colour of inoculated birds, but Zn-AA did not influence these parameters. In Exp. 2, growth performances of infected and uninfected chickens were similar. Infection decreased to only serum carotenoid levels on day 14 after infection, and colour scores on day 42 in the inoculated group without salinomycin and Zn-AA supplementation. The birds that received Zn-AA had significantly higher serum carotenoid levels and colour scores than those that did not. Although supplementation of Zn-AA cannot avoid coccidial damage of caecum, it prevents the reduction of serum carotenoids and pigmentation of Three-Yellow-Chicken infected with E. tenella, but not after infection with E. avervulina. The interactive effects between Zn-AA and salinomycin on growth performance and pigmentation were not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号