首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

2.
Previous study demonstrated that anti-H-43a cytotoxic T lymphocyte (CTL) response of H-43b CWB (H-2b) stain carrying non-major histocompatability complex (MHC) genes of C3H and F1 strains raised by crossing CWB with various H-43b strains was restricted exclusively by self H-2Kb (Kb). In the present study, newly produced C3W strain (H-2k, H-43b), which is H-43-congenic to C3H/HeN (H-2k, H-43a), was used as H-43b mice, and possibility of immunodominance of Kb was examined. No anti-H-43a CTL response could be induced in C3W strain and F1 strains raised by crossing C3W with other H-43b strains not carrying Kb. Thus, the possibility of immunodominance of Kb over the other MHC class I alleles could not be supported. We also examined possibility of epistatic effect of I region genes and non-MHC genes on the Kb restriction. (C3W x C57BL/6)F1(I-Ak/b) and (C3W x B6.CH-2bm12)F1(I-Ak/bm12)mice showed equally anti-H-43a CTL response restricted exclusively by self Kb, and (C3W x B10.MBR)F1(Ik/k) mice also showed anti-H-43a CTL response restricted solely by self Kb. Cold target competition experiments demonstrated that H-43b C57BL/10 or A.BY mice, which do not have non-MHC genes of C3H mounted anti-H-43a CTL response restricted solely by self Kb. Thus, no relation of I region genes or non-MHC genes to the Kb restriction was shown. All the results indicate that H-43b mouse strains, including F1, can not achieve anti-H-43a CTL response unless they carry Kb allele. Notably, (C3W x C57BL/6)F1 mice mounted self Kb-restricted anti-H-43a CTL response, whereas (C3W x B6.CH-2bm1)F1 mice carrying mutated Kb could not mount anti-H-43a CTL response at all. These findings indicate strongly that Kb itself is classical Ir gene of anti-H-43a CTL response and directs self Kb restriction of the response.  相似文献   

3.
Rejection of the MHC class I negative 402AX teratocarcinoma is accompanied by induction of tumor cell-encoded H-2K and H-2D antigens by the genetically resistant host. To determine whether MHC antigen expression is required for 402AX rejection, we have prepared H-2Db-transfected 402AX cells (402AX/Db). Transfectants express high levels of H-2Db, most of which is not associated with beta 2-microglobulin. MHC syngeneic and allogeneic mice susceptible to 402AX are resistant to 402AX/Db, suggesting that MHC class I antigen expression is required for tumor rejection. Autologous 129 hosts, however, are susceptible to 402AX/Db. 402AX cells transfected with the H-2Kb gene (402AX/Kb) are also lethal in the autologous 129/J host, but rejected by MHC syngeneic and allogeneic mice. Non-129 strain 402AX-susceptible mice pre-immunized with 402AX/Db or simultaneously challenged with 402AX/Db plus 402AX are immune to 402AX. Mice immunized with 402AX/Db produce MHC class I induction factor. 402AX/Db and 402AX cells are lysed equally by natural killer cells, indicating that in 402AX cells the expression of class I antigens is unrelated to NK susceptibility. These studies confirm the requirement for class I expression in 402AX immunity, but demonstrate that in the autologous host immunity requires additional factors beyond class I antigen expression.  相似文献   

4.
We elucidated previously that cytotoxic T lymphocyte precursors (CTLp) against H-43a allo-antigen, which we had discovered as a new mouse minor H antigen, were primed in H-43b mice only in the context of self H-2Kb restriction element, and that anti-H-43a CTLp tolerance was induced in H-43b mice by injection with H-43a spleen cells (SC) from H-43 congenic mice, i.e., under the condition of disparity at only the H-43 locus. The present study attempted to determine whether the H-2Kb restriction element for anti-H-43a CTLp priming is also implicated in the induction of anti-H-43a CTLp tolerance. For this purpose, we used a newly established H-43b C3W (H-2k) strain which is H-43 congenic to H-43a C3H/HeN. When (C3W X B10.MBR)F1 (H-43b, H-2Kk/b, Ik/k, Dk/q) mice were injected with H-43a-bearing (C3H/HeN X B10.AKM)F1 (H-43a/b;H-2Kk/k,Ik/k,Dk/q)SC, their selfH-2Kb-restricted anti-H-43a CTLp were were primed (cross-priming). By contrast, injection of H-43a-bearing (C3H/HeN X B10.MBR)F1 (H-43a/b; H-2Kk/b,Ik/k, Dk/q)SC, which differ from (C3H/HeN x B10.AKM) F1 SC solely at H-2K and possess H-2Kb molecules, did not prime but specifically inactivated the anti-H-43a CTLp of (C3W x B10.MBR)F1 mice. These results indicate clearly that anti-H-43a CTLp tolerance is induced exclusively in the context of the H-2Kb element expressed on the antigenic H-43a SC.  相似文献   

5.
It has recently been hypothesized that tumor cells with reduced levels of MHC class I antigens are more susceptible to NK-mediated lysis and are rejected by NK cells, whereas tumor cells with normal levels of class I are rejected by tumor-specific CTL. We have tested this hypothesis using a mouse hepatoma system. The Hepa-1 tumor is a spontaneous H-2Kb loss variant that arose from the BW7756 tumor, when BW7756 was adapted to growth in culture. Our studies have shown that despite the loss of H-2Kb antigen, Hepa-1 is not more susceptible to NK lysis than its H-2Kb-transfected variants. These studies also suggested that NK cells were not responsible for rejection of the Hepa-1 tumor. The Hepa-1 tumor, therefore, appears to contradict the hypothesized linkage of MHC levels and NK susceptibility. Because NK cells are not involved in immunity to this tumor, we have sought to identify the effector cell responsible for Hepa-1 rejection. Cytotoxic T lymphocyte assays demonstrate that in vitro, Hepa-1 cells are lysed by Hepa-1-specific H-2Db-restricted CD4-CD8+ T lymphocytes. Footpad assays demonstrate that in vivo, Hepa-1 rejection requires CD4+CD8- and CD4-CD8+ Hepa-1-primed splenocytes. These results indicate that immunity to Hepa-1 is T cell mediated. Hepa-1 is therefore an example of an unusual tumor in that down-regulation of MHC class I antigen expression is associated with increased CTL susceptibility.  相似文献   

6.
The sensitivity of H-2b-high and H-2b-low variants of BL6 melanoma to the cytotoxic action of NK and lymphokine-activated killer cells was investigated. BL6 mouse melanoma cells lack detectable H-2Kb and had low levels of expression of H-2Db Ag. The BL6T2 variant cells, obtained after treatment of BL6 cells with mutagen N-methyl-N-nitro-N'-nitro-soguanidine, had relatively high levels of expression of class I H-2b Ag. Poly(I:C)-stimulated spleen cells of nude mice were highly cytotoxic for BL6T2, whereas H-2b-low BL6 cells were less sensitive to NK activity in an 18-h 51Cr-release assay. Similar results were obtained after 4-h incubation of radio-labeled tumor cells with IL-2-activated effector cells. In contrast, both lines were equally sensitive to lysis by purified granules derived from rat large granular lymphocytes (LGL) or by macrophages. By using various clones selected from BL6 or BL6T2 cells, it was found that BL6 or BL6T2 clones with low H-2b Ag expression were less sensitive to lysis by NK cells than H-2b-high clones. After IFN treatment of either BL6 or BL6T2, the target cells became more resistant to lysis by either NK cells or by purified LGL granules. IFN-treated BL6 cells had substantially increased expression of H-2b Ag and in this respect became similar to untreated BL6T2. However, IFN-treated BL6 cells were more resistant than BL6T2 cells to lysis by NK cells and LGL granules, suggesting that augmentation of H-2b Ag expression and NK resistance could be two independent IFN-induced effects. With a cold target inhibition assay, it was found that BL6T2 or its H-2 positive clones were highly competitive and inhibited the cytotoxic activity of NK and lymphokine-activated killer cells against radiolabeled YAC-1 and BL6T2, whereas BL6 cells or H-2-negative clones of BL6T2 and BL6 lines showed poor competitive ability. Thus, our data indicate that the NK resistance of H-2-low BL6 cells may be due to a paucity of NK recognizable determinants. N-Methyl-N-nitro-N'-nitroguanidine treatment of BL6 melanoma cells was associated with an increase in class I H-2b Ag expression and NK sensitivity, suggesting the involvement of class I MHC Ag in the sensitivity of tumor cells to NK cell-mediated cytotoxicity.  相似文献   

7.
NK cell-dependent resistance of F1 hybrid mice to parental H-2b hemopoietic allografts is directed to cell surface structures controlled by the Hh-1 locus in or near the H-2D region. Crucial to an understanding of this enigmatic phenomenon is the information on the biochemical nature of the Hh-1 locus-controlled structures. Therefore, we examined the effect of tunicamycin (TM), an inhibitor of asparagine-linked glycosylation and ganglioside biosynthesis, on the expression of Hh-1 determinants in H-2b/Hh-1b lymphomas. The Hh-1b determinants on EL-4 and RBL-5 cells were no longer detectable after TM treatment, as demonstrated by the failure of the treated cells to inhibit hybrid resistance to parental H-2b bone marrow cells in vivo. This interpretation was supported by the unaltered ability of the TM-treated cells to localize in the spleens of irradiated F1 hybrid recipients. In contrast, TM caused only moderate reduction in H-2Kb and H-2Db expression as measured by binding of specific antibodies. This was accompanied by reduced susceptibility to alloimmune anti-H-2Db CTL, but not to anti-H-2Kb CTL. No decrease was found in the susceptibility to NK cell cytotoxicity in vitro. These data indicate that N-linked glycosylation or ganglioside synthesis is crucial for the expression of the Hh-1 locus-controlled target structures, but not for the H-2 class I molecules. The data also show that the Hh-1b determinants are substantially different from those which confer the susceptibility to NK cell-mediated in vitro cytotoxicity.  相似文献   

8.
NK cells reject non-self hematopoietic bone marrow (BM) grafts via Ly49 receptor-mediated MHC class I-specific recognition and calibration of receptor expression levels. In this paper we investigated how Ly49+ subset frequencies were regulated dependent on MHC class I expression. The development of donor and host Ly49A+ (recognizes H-2Dd and H-2Dk ligands) and Ly49C/I+ (Ly49CBALB/c recognizes H-2Kb, H-2Kd, and H-2Dd, and Ly49CB6 recognizes only H-2Kb) NK cell frequencies were monitored for 120 days in murine-mixed allogeneic BM chimeras. C57BL/6 (H-2b) BM was transplanted into BALB/c (H-2d) mice and vice versa. Peripheral NK cell populations were examined every 5 days. Chimerism was found to be stable with 80-90% donor NK cells. In contrast to syngeneic controls reexpressing pretransplant patterns, donor and host NK cells revealed new and mainly reduced subset frequencies 55 days after allogeneic transplantation. Recipient NK cells acquired these later than donor NK cells. In H-2d --> H-2b chimeras Ly49A+, Ly49C/I+, and Ly49A+/Ly49C/I+ proportions were mainly diminished upon interaction with cognate ligands. Also in H-2b --> H-2d chimeras, Ly49A+ and Ly49A+/Ly49C/I+ subsets were reduced, but there was a transient normalization of Ly49C/I+ proportions in the noncognate host. After 120 days all subsets were reduced. Therefore, down-regulation of developing Ly49A+ and Ly49C/I+ chimeric NK cell frequencies by cognate ligands within 7-8 wk after BM transplantation may be important for successful engraftment.  相似文献   

9.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

10.
C57BL/6 (B6, H-2b) mice are CTL responders to both Sendai virus and Moloney leukemia virus. In the former response the H-2Kb class I MHC molecule is used as CTL restriction element, in the latter response the H-2Db molecule. B6 dendritic cells (DC) are superior in the presentation of Sendai virus Ag to CTL in comparison with B6 normal spleen cells. Con A blasts have even less capacity to present viral Ag than NSC, and LPS blasts show an intermediate capacity to present viral Ag. H-2Kb mutant bm1 mice do not generate a CTL response to Sendai virus, but respond to Moloney leukemia virus, as demonstrated by undetectable CTL precursors to Sendai virus and a normal CTL precursor frequency to Moloney virus. Compared to B6 mice, other H-2Kb mutant mice show decreased Sendai virus-specific CTL precursor frequencies in a hierarchy reflecting the response in bulk culture. The Sendai virus-specific CTL response defect of bm1 mice was not restored by highly potent Sendai virus-infected DC as APC for in vivo priming and/or in vitro restimulation. In mirror image to H-2Kb mutant bm1 mice, H-2Db mutant bm14 mice do not generate a CTL response to Moloney virus, but respond normally to Sendai virus. This specific CTL response defect was restored by syngeneic Moloney virus-infected DC for in vitro restimulation. This response was Kb restricted indicating that the Dbm14 molecule remained largely defective and that a dormant Kb repertoire was aroused after optimal Ag presentation by DC. In conclusion, DC very effectively present viral Ag to CTL. However, their capacity to restore MHC class I determined specific CTL response defects probably requires at least some ability of a particular MHC class I/virus combination to associate and thus form an immunogenic complex.  相似文献   

11.
The most polymorphic residues in the first domain of class I major histocompatibility complex (MHC) molecules are in the 61-69 region. We have chosen the H-2Kb molecule for determining the role of this region in the induction of alloimmune responses. A synthetic peptide, Glu-Arg-Glu-Thr-Gln-Lys-Ala-Lys-Gly corresponding to this region was synthesized. T cells enriched from the lymph nodes of allostrain mice that were previously primed with H-2Kb containing cells or with the synthetic peptide in complete Freund's adjuvant undergo extensive in vitro proliferation in response to the synthetic (61-69)H-2Kb peptide. The response was dependent on the presentation of the (61-69)H-2Kb peptide by the syngeneic antigen-presenting cells and was blocked by anti-class II MHC monoclonal antibodies. This peptide fragment of class I MHC molecule activates only helper/inducer type T cells that are involved in the primary responses but not the effector cytotoxic T cells. When coupled to a carrier protein, (61-69)H-2Kb peptide induced antibodies in allostrain mice that bind to intact H-2Kb molecule. No antibodies or T cell responses could be induced in syngeneic H-2b mice. The antigenic site on the H-2Kb molecule recognized by two H-2Kb-specific monoclonal antibodies B8 X 3 X 24 and Y-25 was also mapped in the 61-69 region by direct binding to the synthetic peptide. Therefore the 61-69 region on the H-2Kb molecule represents the first defined sequence on a class I molecule that is directly involved in the induction of alloimmune responses.  相似文献   

12.
Mammalian cells express up to six different MHC class I alleles, many of which differ in terms of their interaction with components of the Ag presentation pathway and level of cell surface expression. However, it is often assumed in Ag presentation studies that class I alleles function independently of each other. We have compared cell surface expression levels and function of MHC class I molecules in F(1) hybrid mice with those in the homozygous parental strains. The level of cell surface expression of certain alleles in F(1) mice differed significantly from 50% of that found on the same cell type in the corresponding parental strain, suggesting allele-specific competition for cell surface expression, and not expression solely according to gene dosage. The strongest effect was observed in H-2(b) x H-2(k) F(1) mice, in which the H-2(b) class I molecules dominated over the H-2(k) class I molecules. The magnitude of H-2(k)-restricted CTL responses to influenza A virus infection was similar in the F(1) hybrid and parental H-2(k) mice. However, in H-2(k) mice expressing a K(b) transgene, cell surface levels of the endogenous class I molecules were down-regulated to a greater degree than in F(1) hybrid mice, and H-2(k)-restricted CTL responses against influenza A virus were greatly reduced, although the CTL repertoire was apparently present. Therefore, certain MHC class I molecules compete with each other for cell surface expression, and the resulting low cell surface expression of specific alleles can lead to a severe reduction in the ability to generate a CTL response.  相似文献   

13.
When (B10.BR X CWB)F1 (BWF1; H-2k/b) mice carrying the H-42b allele at the minor H-42 locus were injected with H-42a C3H.SW (CSW; H-2b) or C3H (H-2k) spleen cells (SC), self-H-2Kb restricted anti-H-42a pCTL in the BWF1 recipients were primed and differentiated to anti-H-42a CTL after in vitro stimulation with (B10.BR X CSW)F1 (BSF1; H-2k/b, H-42b/a) SC. In contrast, anti-H-42a pCTL in H-42b mice were inactivated by injection with H-42-congenic H-42a SC, and stable anti-H-42a CTL tolerance was induced. Preference of H-2Kb restriction of anti-H-42a CTL was strict, and self-H-2Kb-restricted anti-H-42a CTL did not lyse target cells carrying H-42a antigen in the context of H-2Kbm1. Involvement of suppressor cells in the anti-H-42a CTL tolerance was ruled out by the present cell transfer study and the previous cell-mixing in vitro study. Notably, treatment with anti-Thy-1.2 antibody (Ab) plus complement (C) wiped out the ability of CSW SC in the priming of anti-H-42a pCTL of BWF1 mice but left that of C3H SC unaffected, and injection of the anti-Thy-1.2 Ab plus C-treated CSW SC induced anti-H-42a CTL tolerance in the BWF1 recipients. Furthermore, H-42a/b, I-Ab/bm12 [CSW X B6.CH-2bm12 (bm12)]F1 SC could not prime anti-H-42a pCTL in H-42b, I-Ab (CWB X B6)F1 recipients, whereas H-42a/b, I-Ab (CSW X B6)F1 SC primed anti-H-42a pCTL in H-42b, I-Ab/bm12 (CWB X bm12)F1 recipients. The unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC was sometimes corrected by immunization of H-42b female mice with H-42-congenic H-42a male SC. Taking all of the results together, we propose the following. Unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC is caused by "veto cells" contained in the antigenic H-42a SC. Anti-H-42a pCTL in the H-42b recipients directly interacting with H-42-congenic H-42a SC, which bear H-42a antigen and H-2Kb restriction element, are inactivated or vetoed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

15.
NK cells are key effectors of innate immunity and host survival during cytomegalovirus (CMV) infection. Innate murine CMV (MCMV) resistance in MA/My mice requires Ly49H/m157-independent H-2k-linked NK cell control. Here we show that replacement of MA/My H-2k with C57L H-2b susceptibility genes led to a remarkable loss of innate virus immunity, though NK gamma interferon was induced in H-2b and H-2k strains shortly after infection. Thus, H-2b genes expressed in C57L or MA/My.L-H2b are sufficient in alerting NK cells to intrusion but fail to support NK restraint of viral infection. In addition, novel H-2 recombinant strains were produced and utilized in a further refinement of a critical genetic interval controlling innate H-2k-linked MCMV resistance. Importantly, this analysis excluded the gene interval from Kk class I through class II. The responsible gene(s) therefore resides in an interval spanning Dk class Ia and more-distal major histocompatibility complex (MHC) nonclassical class Ib genes. Recently, the NK activation receptor Ly49P and MHC class I Dk proteins were genetically implicated in MCMV resistance, in part because Ly49P-expressing reporter T cells could specifically bind Dk molecules on MCMV-infected mouse embryonic fibroblasts (MEFs). However, as we found that H-2k innate resistance differs in the C57L or MA/My backgrounds and because MCMV very efficiently downregulates H-2k class I proteins in L929 cells and primary MEFs shortly after infection, a Ly49P/Dk model should not fully explain H-2k-linked MCMV resistance.  相似文献   

16.
A high-level expression of a transgene, Ead, encoding the I-Ed alpha-chain is very effective in protection against murine lupus. To investigate the specific contribution of select H-2 haplotypes on the Ead transgene-mediated disease-suppressing effect, we generated H-2 congenic (NZB x BXSB)F1 hybrid mice bearing either H-2b/b, H-2d/b, or H-2d/d haplotype, and compared the transgene-mediated protective effect on the clinical development (autoantibody production and glomerulonephritis) of lupus in these F1 hybrids. The level of protection was most remarkable in mice bearing the I-E- H-2b/b haplotype but was only minimal in I-E+ H-2d/d F1 hybrids. Additional analysis demonstrated a marked suppression of lupus in I-E+ H-2k/k (MRL x BXSB)F1 hybrid mice, indicating that the transgene is able to suppress autoimmune responses even in mice already expressing I-E molecules at a homozygous level. Our results indicate that the level of the transgene-mediated protection is dependent on the host H-2 haplotype. This suggests that the autoimmune suppressive activity of the Ead transgene is likely to be determined through the interaction of the transgene product with the host MHC class II molecules, providing new insight into the role of MHC in lupus-like autoimmunity.  相似文献   

17.
A single injection of anti-I-Ak antibody (AB) into H-2k mice resulted in abrogation of splenic antigen-presenting cell (APC) function for protein antigen-primed T cells or alloantigen-specific T cells. Spleen cells from anti-I-A-treated mice are not inhibitory in cell mixing experiments when using cloned antigen-specific T cells as indicator cells, thus excluding a role for suppressor cells in the observed defect. Also, nonspecific toxic effects and carry-over of blocking Ab were excluded as causes for the defect. Experiments with anti-I-Ak Ab in (H-2b X H-2k)F1 mice showed abrogation of APC function for T cells specific for both parental I-A haplotypes. In homozygous H-2k mice, anti-I-Ak treatment not only abrogated APC function for I-Ak-restricted cloned T cells but also for I-AekE alpha k-restricted cloned T cells. FACS analysis of spleen cells from anti-I-Ak-treated (H-2b X H-2k)F1 mice revealed the disappearance of all Ia antigens (both I-A and I-E determined), whereas the number of IgM-bearing cells was unaffected. The reappearance of APC function with time after injection was correlated with the reappearance of I-A and I-E antigen expression. In vitro incubation of spleen cells from anti-I-A-treated mice led to the reappearance of Ia antigen expression and APC function within 8 hr. Thus, it appears that B cells (as determined by FACS analysis) and APC (as determined by functional analysis) behave similarly in response to in vivo anti-I-A Ab treatment. We interpret these findings as suggesting that in vivo anti-I-A treatment temporarily reduces the expression of Ia molecules through co-modulation on all Ia-bearing spleen cells, thereby rendering them incompetent as APC. Such modulation of Ia molecules does not occur when spleen cells are incubated in vitro with anti-I-A antibodies. These results imply that a primary defect purely at the level of APC in anti-I-A-treated mice may be responsible for the observed T cell nonresponsiveness when such mice are subsequently primed with antigen.  相似文献   

18.
In this study we demonstrate that antitumor CTL repertoire restricted to a single MHC class I allele is higher in homozygous than in heterozygous mice. Consequently, transfection of two parental H-2K genes, but not of a single H-2K gene into a highly metastatic H-2K-negative tumor clone, resulted in abrogation of metastatic properties in F1 recipients. Clones of the 3LL carcinoma, which are low H-2Kb expressors, are nonimmunogenic and highly metastatic. Transfection of H-2K genes converted cells of such clones to nonmetastatic in syngeneic homozygous mice. However, in semi-syngeneic heterozygous mice, single H-2K transfectants retained their metastatic phenotype. In such heterozygous mice, i.e., in (H-2d x H-2b)F1, or in (H-2k x H-2b)F1, transfection of the two parental H-2K genes was required for complete abolishment of the metastatic phenotypes. In fact, in these heterozygous animals, even the local growth (i.e., tumorigenicity) of the double H-2K transfectants was significantly suppressed. These observations are attributed to the difference between homozygous and heterozygous mice with regard to the T cell repertoire restricted to a single H-2K-tumor-associated antigen complex. The reduced tumorigenicity and the complete abrogation of the metastatic phenotype was a function of a high immunogenic competence of the double transfectants in F1 heterozygous mice, which was significantly higher than that of single transfectants, as measured by the induction of CTL and of their precursors. Immunization of F1 mice by inactivated double transfectants conferred protection against metastasis formation by a subsequent graft of the parental D122 cells. Single transfectants were only marginally effective in conferring such protection. Applying an immunotherapy protocol, we observed that a series of vaccinations with double transfectants of animals already carrying a parental tumor reduced significantly the generation of metastasis by the otherwise highly metastatic D122 cells.  相似文献   

19.
We have established H-2D(d)-transgenic (Tg) mice, in which H-2D(d) expression can be extinguished by Cre recombinase-mediated deletion of an essential portion of the transgene (Tg). NK cells adapted to the expression of the H-2D(d) Tg in H-2(b) mice and acquired reactivity to cells lacking H-2D(d), both in vivo and in vitro. H-2D(d)-Tg mice crossed to mice harboring an Mx-Cre Tg resulted in mosaic H-2D(d) expression. That abrogated NK cell reactivity to cells lacking D(d). In D(d) single Tg mice it is the Ly49A+ NK cell subset that reacts to cells lacking D(d), because the inhibitory Ly49A receptor is no longer engaged by its D(d) ligand. In contrast, Ly49A+ NK cells from D(d) x MxCre double Tg mice were unable to react to D(d)-negative cells. These Ly49A+ NK cells retained reactivity to target cells that were completely devoid of MHC class I molecules, suggesting that they were not anergic. Variegated D(d) expression thus impacts specifically missing D(d) but not globally missing class I reactivity by Ly49A+ NK cells. We propose that the absence of D(d) from some host cells results in the acquisition of only partial missing self-reactivity.  相似文献   

20.
The cytotoxic activity of NK cells is regulated by class I MHC proteins. Although much has been learned about NK recognition of class I autologous targets, the mechanisms of NK self-tolerance are poorly understood. To examine the role of a nonpolymorphic, ubiquitously expressed class Ib Ag, Q9, we expressed it on class I-deficient and NK-sensitive B78H1 melanoma. Presence of this Qa-2 family member on tumor cells partially protected targets from lysis by bulk lymphokine-activated killer (LAK) cells. H-2K(b)-expressing B78H1 targets also reduced LAK cell activity, while H-2D(b) offered no protection. Importantly, blocking with F(ab')(2) specific for Q9 or removal of this GPI-attached molecule by phospholipase C cleavage restored killing to the level of vector-transfected cells. Experiments with LAK cells derived from H2(b) SCID and B6 mice established that NK1.1(+)TCR(-) NK and NK1.1(+)TCR(+) LAK cells were the prevalent cytolytic populations inhibitable by Q9. Treatment of mice with poly(I:C) also resulted in generation of Q9-regulated splenic cytotoxicity. LAK cells from different mouse strains responded to Q9, suggesting that the protective effect of this molecule is not detectably influenced by Ly49 polymorphisms or the presence/absence of Q9 in NK-harboring hosts. We propose that Q9 expressed on melanoma cells serves as a ligand for yet unidentified NK inhibitory receptor(s) expressed on NK1.1(+) NK/T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号