首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic and somatic cells at interphase in Triatoma infestans are characterized by the formation of a large chromocenter, which was assumed to contain the whole of the three large pairs of autosomes and the sex chromosomes. Observations with C-banding techniques show that the chromocenter is formed only by the terminal and subterminal heterochromatic blocks of the three large pairs of autosomes and the sex chromosomes. During pachytene the two largest autosomal pairs loop on themselves and their condensed ends form the chromocenter, together with the single heterochromatic end of the third autosomal pair. The X and Y chromosomes seem to associate with these condensed ends by their affinity for C-heterochromatin. During a very short pachytene stage, bivalents and synaptonemal complexes (SCs) are observed. Pachytene is followed by a very long diffuse stage, during which SCs are disassembled, multiple complexes aggregate on the inner face of the chromocenter and finally all complexes disappear and a dense material is extruded to the cytoplasm through the annuli. The 3-dimensional reconstruction of early pachytene chromocenters show 3 SCs entering and tunnelling the chromocenter, while during mid-pachytene 4 SCs enter this mass and a 5th SC is in a separate small mass. The looping of a whole SC which has both ends in the chromocenter was shown by the reconstructions. These data are interpreted as the progressive looping of the two largest bivalents during pachytene, forming finally the association of 5 bivalent ends corresponding to the 5 C-banding blocks of the large autosomal pairs. No single axis or SC that could be ascribed to the sex chromosomes was found. This agrees with the pachytene microspreads, which show only 10 SCs corresponding to the autosomal bivalents. The X and Y chromosomes are enclosed in the chromocenter, as shown by the unravelling chromocenters at diplotene-diakinesis. Thus the sex chromosomes do not form axial condensations, and this fact may be related to the ability of the X and Y chromosomes to divide equationally at metaphase I. SCsThis paper is dedicated to the memory of the late Professor Francisco A. Saez  相似文献   

2.
A cytogenetic analysis was performed in experimental hybrids between species of Chagas disease transmitting bugs with remarkable differences in the amount and distribution of heterochromatin. Using C-banding technique, we identified the parental species chromosomes and analysed the meiotic behaviour in the male hybrids between Triatoma platensis and T. infestans, T. platensis and T. delpontei, and T. infestans and T. rubrovaria. The two former hybrids have an entirely normal meiotic behaviour despite the extensive differences in C-banded karyotypes observed in the parental species, indicating that heterochromatin differences between homeologous chromosomes are not a barrier that influences meiotic synapsis and recombination. On the contrary, the experimental hybrids between T. infestans and T. rubrovaria show failures in pairing of homeologous chromosomes that lead to the production of abnormal spermatids and hybrid sterility. Our data suggest that karyotypic repatterning within triatomines has involved at least two different pathways. Among closely related species, chromosomal changes have largely involved addition or deletion of heterochromatic regions. In more distant species, chromosomal rearrangements (i.e. inversions and translocations) have also arisen. Hybridisation data also allow to hypothesize about the origin and divergence of this taxonomic group, as well as the mechanisms that maintain species isolation.  相似文献   

3.
The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.  相似文献   

4.
5.
The quick detection of domestic and peridomestic triatomines in their environments becomes difficult without the use of dislodgement substances that flush them out from their shelters. At present, tetramethrin 0.2% is being widely used in control programs. Although it is an efficient dislodging agent, its toxicity might affect the health of captured triatomines, of other insects and, to a lesser extent, of other animals, including humans. Here, we tested if semiochemicals released by disturbed adults of Triatoma infestans and/or Rhodnius prolixus can make larvae of the same species exit from their refuges. In a walking olfactometer we found that: 1) larvae of T. infestans were repelled by the odors released by disturbed adults of their own species and of R. prolixus, 2) larvae of R. prolixus did not change their behavior in the presence of odors released by adults of both species, and 3) activity levels were not modulated by these odors in any of both species. Besides, in pseudo‐natural conditions we found an increased flushing‐out activity of larvae of T. infestans when their shelters were sprayed with isobutyric acid or 3‐pentanol, and of larvae of R. prolixus when sprayed with 3‐methyl1butanol. We succeeded in this work to dislodge larvae of triatomines from artificial shelters using natural volatile compounds, allowing the capture of live bugs for further investigations (e.g., xenodiagnosis or genetic studies) and favoring ecological aspects (e.g., minimizing environmental insecticide‐contamination and non‐targeted mortality).  相似文献   

6.
Novello A  Villar S 《Genetica》2006,127(1-3):303-309
A chromosome 1 (Cr1) pericentric inversion is described in six of seven species in the genus Ctenomys (tuco-tucos) from Uruguay. The inversion was inferred from G-band analyses of subtelocentric Cr1 hypothesised to be derived from the ancestral metacentric condition. Cr1 varies across species in heterochromatin amount and localisation including a metacentric chromosome without positive C-bands in C. torquatus, a subtelocentric chromosome with heterochromatic short arms in C. rionegrensis, and a subtelocentric chromosome negative after C-banding in five of the species analysed here. Pachytene chromosomes from C. rionegrensis, a species with the highest heterochromatin content, and C. torquatus, one of the species with the lowest heterochromatin content, were analysed in order to assess possible mechanisms of heterochromatin evolution. This analysis revealed the presence of three heterochromatic chromocenters in C. rionegrensis where bivalents converge, while in C. torquatus only one chromocenter was observed. In both species, highly repetitive DNA was observed, localised in chromocenters after “in situ” hybridisation. Heterochromatin associated protein M31 was localised in chromocenters of both species after immuno-detection. The spread of heterochromatin in Ctenomys chromosomes could be produced by chromatin exchanges at the chromocenter level. We propose the exchange of this DNA associated proteins between non-homologous chromosomes in pachytene to be the responsible for the spread of heterochromatin through the karyotypes of species like C. rionegrensis  相似文献   

7.
8.
Using a laser confocal microscope, chromatin arrangements in intact interphase nuclei were investigated in four plant species. Chromosomes in these plants have specific segments that can be stained with the fluorescent dye chromomycin A3 (CMA). We stained centromeres inHordeum vulgare, sub-telomeric regions inSecale cereale, satellites inChrysanthemum multicore, and the satellites and the short arms of chromosomes with satellites inHemerocallis middendorfii. The following points were shown: (1) In mitotic interphase nuclei, the centromere and the telomeres of both arms touched the nuclear membrane and had evident polarity. Some CMA-bodies in sub-telomeric regions do not contact the nuclear membrane. (2) Differentiated nuclei had a non-random construction. Polarity of chromosomes is maintained, however, the chromosomes are far apart from the nuclear membrane. (3) Associations in sub-telomeric regions in the interphase nuclei ofSecale cereale were probably due to the association of heterochromatic regions with identical repeated sequences rather than telomere associlations. (4) In interphase nuclei ofChrysanthemum multicore, satellites fused during interphase.  相似文献   

9.
Summary 1. From the proventriculus ofTriatoma infestans aPseudomonas species could always be obtained in pure culture by simple means.2. The bacteria isolated out of the ventriculus of various bugs appeared to agree, not only morphologically but also biochemically and agglutinatorically.3. Further evidence for the identity of the intracellular and the lumen form of this bacterium could be furnished by serological means.4. The assumption expressed byWigglesworth that the infection of the young bug would occur already in the egg and his view on the means by which the egg is infected are very much open to question.5. It does not appear probable that the bacterium, isolated byWigglesworth fromRhodnus prolixus is identical with the proventriculus bacterium ofTriatoma infestans.6. The intracellular bacteria set free into the lumen of the proventriculus have in virtue of their haemodigestive capacity, probably a function in the digestion of the blood sucked by the bug.  相似文献   

10.
The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n = 28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, "X" and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, "X" and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the "X" chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed.  相似文献   

11.
Nucleolar-organizer region, nucleolus and mode of association of the sex bivalent were analyzed in spermatecytes of Chelymorpha variabilis Boheman. This species (2n=10II+Xyp) shows the typical sex chromosome system of the group Polyphaga. The results of silver staining techniques showed the nucleolar organizer region localized in a subterminal position of an autosomal bivalent. During meiotic prophase the nucleolus was distinguished with the silver staining and acridine orange fluorescence technique up to diakinesis. The independence of nucleolus and sex bivalent Xyp during meiosis is demonstrated. The positively silver staining but negatively orange-red material found within the parachute could be involved in the regular co-orientation of both sex chromosomes. After a longer hypotonic treatment, sex bivalents were observed elongated and paired only at one end during the pachytene stage. Along these sex chromosomes, C-bands showed positive blocks located in the pericentromeric and telomeric regions. Heterochromatic association of both sex chromosomes was suggested.  相似文献   

12.
Occurence of sex chromatin is widespread amongLepidoptera. Somatic interphase nuclei of female larvae and adults contain a distinct heteropycnotic body which is missing in males. Two types of exceptions exist: one type in which heteropycnotic bodies not discernable from the sex chromatin in other species are formed in both sexes while in another type such chromatin bodies are absent in either sex. Absence of sex chromatin is not linked to a certain systematic entity within the Lepidoptera. In species possessing sex chromatin, the structural aspect of the heteropycnotic body varies within certain limits between different species and tissues. Chromosome analysis of 4 species, 3 of which exhibit normal chromatin bodies in females, while the 4th has no chromatin bodies in both sexes, agree with the interpretation of sex chromatin in the heterogametic females ofLepidoptera as a heteropycnotic Y-chromosome. This interpretation does not apply to those exceptional species which contain heteropycnotic bodies in both sexes.  相似文献   

13.
Summary The chromosome complements of eighty brain cells ofHylemya antiqua have been studied. The eighty cells were found in thirty-three larvae. Total complement length (TCL) is not randomly distributed among the larvae. Because there is an inverse correlation between chromosome length and width, it appears that in the cells studied the different chromosome lengths are partly expressions of different stages of metaphase contraction. It is suggested that synchronous division of cells still occurs in late larvae.The length of each chromosome arm is highly correlated with that of every other arm. It is possible that the correlations are complete but that inadequate technique causes the departures from completeness which are observed. The chromosome lengths are corrected slightly for distortions, but the corrections make very little difference in the correlation coefficients. There is a high value for the correlation between the correlation of two arm lengths and the sum of the two arm lengths. This is to be expected if the perfect correlation between all arm lengths is being obscured by errors of drawing and measurement.The autosomal arms have very similar coefficients of variation. The arm ratios (length of long arm divided by short arm) are not correlated with TCL or with each other, and arm ratio is randomly distributed among the larvae. The sex chromosomes have a smaller coefficient of variation than the autosomes, so that they are relatively large in small cells and relatively small in large cells.Twenty-two cells inHylemya fugax were measured. The autosomes also showed a high correlation between arm lengths. An entirely heterochromatic autosomal arm showed the same phenomenon of a low coefficient of variation which was shown by the heteropycnotic sex chromosomes inH. antiqua. The low variability of heterochromatic regions accompanied by an apparently non-random distribution of the TCL may produce an erroneous picture of the species complement when dealing with small numbers.It is suggested that for simplicity in using cytological observations of this sort for taxonomic purposes, the technique of measuring the percent TCL of a chromosome plus its arm ratio be replaced by the percent TCL of each arm plus the average length difference between the arms of each chromosome pair in units of percent TCL.  相似文献   

14.
In the vole, Microtus agrestis, the constitutive heterochromatin is largely restricted to the giant sex chromosomes but varies in its degree of condensation in various cell types. In the cleavage embryos and fibroblasts it formed one or two long and extended heterochromatic fibers, in hepatocytes it formed two large and diffuse masses and in neurons, spermatogonia and oogonia it formed two large and compact masses. The basic patterns of all differentiated cells were essentially unchanged throughout development.—At all stages of development and in cells of all types, mitotic nuclei displayed two large heteropycnotic chromosomes in prophase and persistent condensation in telophase. Apposition and delayed separation of chromatids of the giant chromosomes was also observed in metaphase and anaphase, respectively. During the first meiotic prophase of spermatocytes and oocytes, the giant chromosomes were also heteropycnotic.—The results strongly suggest that constitutive heterochromatin is localized in the same chromosomes throughout development and represents a specific entity.  相似文献   

15.
Resistance levels to insecticides used in control of Chagas Disease vectors were assessed in two species of bugs (Hemiptera: Reduviidae): Triatoma infestans (Klug) from Brazil and Rhodnius prolixus Stål from Venezuela. The resistance ratios, compared to susceptible laboratory strains, were determined by topical application bioassays. The T. infestans PA strain exhibited resistance ratios of 7× to deltamethrin, 3.6× to β‐cyfluthrin and 3.3× to cypermethrin, but was susceptible to β‐cypermethrin and lambda‐cyhalothrin. Rhodnius prolixus CA strain showed resistance to all the pyrethroids evaluated, the resistance ratios ranging between 4.5× to lambda‐cyhalothrin and 12.4× to cypermethrin. Deltamethrin resistance in both strains was decreased by piperonyl butoxide, suggesting oxidative metabolism as cause of resistance.  相似文献   

16.
In spite of various cytogenetic works on suborder Heteroptera, the chromosome organization, function and its evolution in this group is far from being fully understood. Cytologically, the family Rhyparochromidae constitutes a heterogeneous group differing in chromosome numbers. This family possesses XY sex mechanism in the majority of the species with few exceptions. In the present work, multiple banding techniques viz., C-banding, base-specific fluorochromes (DAPI/CMA3) and silver nitrate staining have been used to cytologically characterize the chromosomes of the seed plant pest Elasmolomus (Aphanus) sordidus Fabricius, 1787 having 2n=12=8A+2m+XY. One pair of the autosomes was large while three others were of almost equal size. At diplotene, C-banding technique revealed, that three autosomal bivalents show terminal constitutive heterochromatic bands while one medium sized bivalent was euchromatic. Microchromosomes (m-chromosomes) were positively heteropycnotic. After DAPI and CMA3 staining, all the autosomal bivalents showed equal fluorescence, except CMA3 positive signals, observed at both telomeric heterochromatic regions of one medium sized autosomal bivalent. Silver nitrate staining further revealed that this chromosome pair carries Nucleolar Organizer Regions (NORs) at the location of CMA3 positive signals. The X chromosome showed a thick C-band, positive to both DAPI /CMA3 while Y, otherwise C-negative, was weakly positive to DAPI and negative to CMA3, m-chromosomes were DAPI bright and CMA3 dull.  相似文献   

17.
Triatomines display most of their activities during the night. Before sunrise, they search, select and occupy adequate shelters to stay during the photophase, avoiding exposure to diurnal predators. In this work, we first explored the interactions between individuals of the same or different species in the shelter selection process of Triatoma infestans (Klug 1834) and Rhodnius prolixus (Stål 1859). When two groups of insects (either of different nutritional status, nymphal instar or species) were released together over an experimental arena containing two identical shelters, all nymphs were distributed randomly, suggesting the absence of intra- and inters-pecific interactions. Secondly, we analysed their preferences for particular features of shelters by releasing one group of insects (either T. infestans or R. prolixus) over an arena containing two different refuges. Nymphs exhibited preferences for darker shelters with a vertical orientation of its substrate and elevated from the ground, highlighting the importance of such features in a shelter selection context. We conclude that these species disregard the presence of other individuals but evaluate certain characteristics of the shelters to choose them. This information may contribute to understanding the colonization/recolonization dynamic processes of these Chagas disease vectors.  相似文献   

18.
The behavior of large, distal, C-heterochromatic blocks in the spermatogenesis of the grey cockroach Nauphoeta cinerea was investigated by light and electron microscopy. In early meiotic prophase I, heterochromatic blocks of some autosomes are involved in the nonhomologous association and form a chromocenter. Fluorescent in situ hybridization (FISH) with a ribosomal DNA (rDNA) probe revealed the signal on only two pairs of middle chromosomes not engaged in the chromocenter formation; therefore, ectopic conjugation was not caused by the formation of a nucleolus. Analysis showed that chromocentric heterochromatin does not participate (functionally or spatially) in basic meiotic events. Heterochromatin does not participate in the formation of a bouquet, initiation of homologous synapsis, or recombination events. The chromocenter disintegrates at the end of the pachytene when synapsis is totally completed. Heterochromatin polymorphism results in asymmetric synaptonemal complexes (SCs) with different degrees of synaptic adjustment. The axis of the sex univalent (male sex determination is XO) is split in various sites, regardless of heterochromatin localization.  相似文献   

19.
Cytological study of three distinctly separated populations ofPoecilocera picta revealed a chromosome number of 2N = 18 + XO/ XX. Except for the hemizygosity of a procentric heterochromatic block in the M6 pair of the Bangalore population, the basic karyotype of the three populations is markedly similar. The autosomal karyotype formula is 2Lt + 4Mt + 1 Mst + 2S st and the telocentric X chromosome is the longest of the complement. All bivalents at pachytene carried procentric heterochromatic blocks. The M4 is the nucleolus organiser with the NOR region situated interstitially but proximal to the centromere. About 11 μm (4%) of the total (290 μm) autosomal pachytene complement is heterochromatic; a major portion of it is contributed by the S9 pair which is mostly heterochromatic. Chiasmata are localized proximally and distally and in the S9 pair their formation is confined to the short procentric euchromatic segment of the long arm. Female meiosis did not reveal any chromomere pattern at pachytene and, unlike in the male, the sex bivalent in the female is indistinguishable from the autosomal bivalents. G- and C-banding patterns in males showed procentric bands in all the chromosomes. In addition there are eight telomeric and two interstitial bands which are C negative. The S9 pair showed only two bands. The G-banding pattern of the sex chromosome in meiosis showed only a centric band while the heterochromatic body of the facultatively heterochromatic X remained G negative.  相似文献   

20.
Triatomines (Hemiptera: Reduviidae: Triatominae) are nocturnal blood‐sucking insects. During daylight hours they remain in an akinetic state inside their shelters, whereas at dusk they become active and move outside. When they are outside their shelters during the photophase, triatomines are vulnerable to diurnal predators and the period just before dawn is critical to their survival. This work analyses the existence of competitive interactions involved in the occupancy of shelters by triatomines. Behavioural assays were performed in which nymphs of different stages, nutritional status or species were released in an experimental arena containing a space‐limited artificial shelter. The proportions of individuals occupying the shelter during the photophase were quantified to estimate the competitive abilities of each stage and species. Intraspecific comparisons showed higher levels of shelter occupancy for fourth over fifth instars and fed over unfed nymphs of Triatoma infestans. Interspecific comparisons showed higher rates of shelter occupancy for Triatoma sordida in comparison with T. infestans, and for T. infestans over Rhodnius prolixus. Arrival order was also relevant to determining shelter occupancy levels: early arrival was advantageous in comparison with later arrival. The study of intra‐ and interspecific competitive interactions for shelter occupancy provides relevant information about colonization and recolonization processes in the natural environments of triatomines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号