首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T Ochi 《Mutation research》1989,213(2):243-248
The effects of iron chelators and glutathione (GSH) depletion on the induction of chromosomal aberrations by tert-butyl hydroperoxide (t-BuOOH) were investigated in cultured Chinese hamster V79 cells. t-BuOOH in a concentration range of 0.1-1.0 mM induced chromosomal structural aberrations, consisting mainly of chromatid gaps and breaks, in a dose-dependent fashion. The divalent iron chelator o-phenanthroline almost completely suppressed the formation of chromosomal aberrations while the trivalent chelator desferrioxamine was less effective. GSH depletion did not affect the formation of chromosomal aberrations and DNA single-strand breaks (ssb) by t-BuOOH. DNA ssb by 0.5 mM t-BuOOH were repaired within 60 min of treatment in both GSH-depleted (GSH-) and non-depleted (GSH+) cells. In contrast, chromosomal aberrations increased a little during the 60 min after treatment in both GSH- and GSH+ cells. The aberrations were then repaired in GSH+ cells but those in GSH- cells were maintained to a great extent during 20 h of post-treatment incubation. These results indicate that divalent iron mediates the induction of chromosomal aberrations by t-BuOOH. That t-BuOOH-induced chromosomal aberrations remain even after DNA ssb were repaired suggests involvement of other lesions than DNA ssb in the formation of chromosomal aberrations by the hydroperoxide.  相似文献   

2.
The inhibition of glutathione (GSH) synthesis by -buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

3.
The effect of three radiomodifying agents, cysteamine, hyperthermia, and hypoxia, on the induction of the major classes of X-ray-induced DNA lesions, was studied using mouse L cells and Chinese hamster V79 cells. The use of filter elution techniques allowed most of these studies to be conducted at X-ray doses within the survival-curve range. Cysteamine was found to protect against DNA single-strand breakage (ssb), DNA base damage, and DNA-protein crosslinkage. Hyperthermia had no effect on the level of DNA ssb or DNA base damage, but in L cells (but not in V79 cells) it increased the level of DNA-protein crosslinkage relative to DNA ssb. Hypoxia protected against DNA ssb, had no significant effect on the level of DNA base damage, and enhanced the level of DNA-protein crosslinkage relative to DNA ssb. These results support the previous suggestion that the X-ray-induced lethal lesion is DNA double-strand breakage. Implications of these findings for the mechanisms of formation of X-ray-induced DNA lesions are also discussed.  相似文献   

4.
The role of glutathione (GSH) in cellular protection mechanisms in round spermatids from hamsters was studied. Isolated spermatids were largely depleted of GSH by treating the cells for 2 h with the GSH conjugating agent diethyl maleate (DEM). This treatment resulted in a 90% decrease of the cellular GSH content, but did not affect the ATP content. Exposure of isolated spermatids to cumene hydroperoxide (CHP), a compound which is detoxicated by the GSH redox cycle, showed that the cytotoxicity of the peroxide was markedly potentiated by GSH depletion of the cells. The cytotoxicity was reflected by the cellular ATP content. A decrease of the ATP content of the GSH-depleted spermatids was observed at 5-6-fold lower CHP concentrations, as compared to control cells. An increased cytotoxicity in GSH-depleted cells was also observed using 1-chloro-2,4-dinitrobenzene (CDNB), which is a reactive compound that is detoxicated by glutathione conjugation. The induction of single-strand DNA breaks by gamma radiation was 3-5-fold higher in GSH-depleted spermatids as compared to control cells. This radiation-induced damage was estimated under hypoxic conditions (500 p.p.m. O2 in N2). GSH depletion did not affect the repair of single-strand DNA breaks following the irradiation. The present results indicate that cellular GSH has an important function in the defence mechanisms of round spermatids against peroxides, electrophilic xenobiotics and radiation-induced DNA damage.  相似文献   

5.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

6.
Since endogenous glutathione (GSH), the main non-protein intracellular thiol compound, is known to provide protection against reactive radical species, its depletion by diethylmaleate (DEM) was used to assess the role of free radical formation mediated by doxorubicin in DNA damage, cytotoxicity and mutagenicity of the anthracycline. Subtoxic concentrations of DEM that produced up to 75% depletion of GSH did not increase doxorubicin cytotoxicity in a variety of cell lines, including Chinese hamster ovary (CHO) and lung (V-79) cells, LoVo human carcinoma cells and P388 murine leukemia cells. Similarly, the number of doxorubicin-induced DNA single strand breaks in CHO cells and the mutation frequency in V-79 cells were not affected by GSH depletion. The results obtained suggest that mechanisms other than free radical formation are responsible for DNA damage, cytotoxicity and mutagenicity of anthracyclines.  相似文献   

7.
B K?berle  G Speit 《Mutation research》1990,243(3):225-231
Using sister-chromatid exchanges (SCEs) as an indicator for DNA damage, we investigated the role of glutathione (GSH) as a determinant of cellular sensitivity to the DNA-damaging effects of the cytostatic drugs adriamycin (AM) and cyclophosphamide (CP). Exposure of V79 cells to buthionine sulfoximine (BSO) resulted in a complete depletion of cellular GSH content without toxicity and without increasing the SCE frequency. Subsequent 3-h treatment of GSH-depleted cells with AM or S9-mix-activated CP caused a potentiation of SCE induction. In Chinese hamster ovary (CHO) cells, which showed a higher GSH level compared to V79 cells, BSO treatment led to a depletion of GSH to about 5% of the control and increased SCE induction by AM and CP. Compared to V79 cells, the effect of AM on SCE frequencies was less distinct in CHO cells, while CP exerted a similar effect in both cell lines. Pretreatment of V79 cells with GSH increased the cellular GSH content, but had no effect on the induction of SCEs by AM, and pretreatment with cysteine influenced neither GSH levels nor SCE induction by AM. The study shows that SCEs are a suitable indicator for testing the modulation of of drug genotoxicity by GSH. The importance of different GSH contents of cell lines for their response to mutagens is discussed.  相似文献   

8.
The addition of tert-butyl hydroperoxide (t-BuOOH) to isolated mitochondria resulted in oxidation of approximately 80% of the mitochondrial reduced glutathione (GSH) independently of the dose of t-BuOOH (1-5 mM). Concomitant with the oxidation of GSH inside the mitochondria was the formation of GSH-protein mixed disulfides (protein-SSG), with approximately 1% of the mitochondrial protein thiols involved. A dose-dependent rate of GSH recovery was observed, via the reduction of oxidized GSH (GSSG) and a slower reduction of protein-SSG. Although t-BuOOH administration affected the respiratory control ratio, the mitochondria remained coupled and loss of the matrix enzyme, citrate synthase, was not increased over the control and was less than 3% over 60 min. A slow loss of GSH out of the coupled non-treated mitochondria was not increased by t-BuOOH treatment, in fact, a dose-dependent drop of GSH levels occurred in the medium. However, no GSSG was found outside the mitochondria, indicating the necessary involvement of enzymes in the t-BuOOH-induced conversion of GSH to GSSG. The absence of GSSG in the medium also suggests that, unlike the plasma membrane, the mitochondrial membranes do not have the ability to export GSSG as a response to oxidative stress. Our results demonstrate the inability of mitochondria to export GSSG during oxidative stress and may explain the protective role of mitochondrial GSH in cytotoxicity.  相似文献   

9.
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.  相似文献   

10.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

11.
Radicals generated by the peroxidase catalyzed oxidation of a wide variety of substrates oxidize GSH, NADH, or arachidonate with accompanying oxygen activation. Substrates studied include carcinogens, drugs, or xenobiotics. The effectiveness of the various radicals is partly related to their one-electron oxidation potential. High redox potential radicals were particularly effective at oxidizing these biomolecules. Low redox potential radicals did not react with GSH, NADH, or arachidonate, but can directly activate oxygen to form hydroxyl radicals or undergo scission to carbon radicals. The hydroxyl and carbon radicals have a high redox potential and readily oxidize biomolecules. DNA strand breakage also occurs with some high redox potential radicals, but DNA did not react with low redox potential radicals. The extensive binding of xenobiotics to DNA in the peroxidase system was attributed to noncovalent binding by polymeric products or covalent binding by the two electron oxidation product (formed by radical dismutation or oxidation). The latter can cause alkali labile DNA strand breaks. GSH conjugate formation was also attributed to the two electron oxidation product. Radicals have been trapped in intact cells and oxygen activation or lipid peroxidation has been demonstrated but it is still not clear whether the associated GSH oxidation, DNA strand breakage and cytotoxicity is the result of direct action by radicals. Indirect enzymic mechanisms for free radical mediated DNA strand breakage and cytotoxicity are discussed.  相似文献   

12.
Nitroxide antioxidants can be reduced to hydroxylamines or oxidized to oxoammonium cations. Consequently, nitroxides can modify oxidative damage acting as reducing and/or as oxidizing agents, and in many cases the nitroxides are continuously recycled. They provide protection against oxidative stress via various mechanisms including SOD-mimic activity and detoxification of carbon-, oxygen-, and nitrogen-centered radicals, as well as oxidation of reduced transition metals. In contrast to the common concept, according to which the nitroxides' protective effect takes place via inhibition of the Fenton reaction, there are observations suggesting the opposite. In the present investigation, DNA breakage catalyzed by copper served as an experimental model for studying the anti- and pro-oxidative activity of nitroxides. Nitroxides provided protection in the presence of GSH, which is known to facilitate metal-catalyzed DNA damage. In the absence of a reductant, nitroxides enhanced DNA breakage under aerobic conditions with or without added H(2)O(2) and facilitated H(2)O(2) depletion. The rates of nitroxide-catalyzed DNA breakage and H(2)O(2) depletion increased as the concentrations of copper, H(2)O(2), and nitroxide increased. Although the catalytic activity of nitroxides is low, it is sufficient to induce DNA breakage. The efficacy of DNA breakage by the tested piperidine nitroxides correlated with the nitroxide-induced depletion of H(2)O(2) with the exception of the pyrrolidine nitroxide 3-carbamoylproxyl. The results suggest that the nitroxide and the copper are continuously recycled while catalyzing DNA breakage and depletion of H(2)O(2), which serves both as a source of reducing equivalents and as the electron sink.  相似文献   

13.
The effects on the cellular viability and induction and repair kinetics of DNA strand breaks in HeLa cells were examined after exposure to a thermal neutron beam and compared with those after gamma-irradiation. The thermal neutron survival curve had no initial shoulder. The relative biological effectiveness (r.b.e.) value of the neutron beam was determined to be 2.2 for cell killing (ratio of D0 values), 1.8 and 0.89 for single strand breakage (ssb) by alkaline sedimentation and alkaline elution respectively, and for double strand breakage (dsb) 2.6 by neutral elution. No difference was observed between thermal neutrons and gamma-rays in the repair kinetics of ssb and dsb. It is suggested that the effect induced by the intracellular nuclear reaction, 14N(n,p)14C is mainly responsible for the high r.b.e. values observed.  相似文献   

14.
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390-401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H(2)O(2) [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414-419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.  相似文献   

15.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

16.
UV radiations are the major environmental factors that induce DNA damage of skin cells either by direct absorption (UVB), or after inducing an oxidative stress (UVA and UVB). Cells maintain a reducing intracellular environment to avoid genomic damage. MTs have been expected not only to control metal homeostasis but also counteract the glutathione (GSH) depletion induced by oxidative stress because of their high thiol content. Induction and redistribution of MTs in cultured human keratinocytes (HaCaT) in response to SSL, is an important cellular defense mechanism against DNA damage. Reduced glutathione (GSH) is another way of cellular protection against UV-induced oxidative stress. This study which extend our previous finding focused on the relation between intracellular GSH and Zn genoprotective effects after solar irradiation. HaCaT cells, depleted or not in GSH by a chemical treatment were used to compare MTs induction by Northern blot, expression by Western blot and localization using immunocytochemistry. Zn genoprotection experiments after SSL irradiation was carried out by the comet assay. We demonstrated that in absence of GSH, Zn-MTs could protect DNA after SSL irradiation and that GSH depletion has no effect on MTs induction and localization. Nuclear Zn-MTs could be responsible for this observed genoprotection in GSH depleted cells. So the GSH/Zn and the MT/Zn systems could be two independent but interacting mechanisms of cellular protection against SSL injury.  相似文献   

17.
Exposure of cultured Chinese hamster ovary (CHO) cells to hydrogen peroxide results in the production of extensive DNA breakage which can be prevented by the intracellular calcium chelator Quin 2. This effect occurs at Quin 2 AM concentrations as low as 0.1 microM and is maximal at 1 microM. Addition of the extracellular calcium chelator, EGTA, does not affect the level of DNA breakage generated by H2O2. Quin 2 also significantly reduces cellular toxicity caused by the oxidant. Experiments with spin-trapping techniques demonstrate that Quin 2 does not affect the formation of hydroxyl radicals generated by the action of Fe2+ on H2O2. Quin 2 at high concentrations, similar to those reached within the cell, actually enhanced generation of hydroxyl radical in the absence of other iron chelators under our experimental conditions. These results suggest that H2O2 or H2O2-derived radicals do not directly induce DNA strand breakage in intact mammalian cells; rather, these radicals may disturb intracellular Ca2+ homeostasis which results in secondary reactions ultimately leading to DNA strand breakage. In addition to strand breakage, membrane and protein oxidation probably contribute to the cytotoxic effect of H2O2.  相似文献   

18.
19.
The respective roles of H2O2 and .OH radicals was assessed from the protective effects of catalase and the iron chelator o-phenanthroline on 1) the inhibition of protein synthesis, and 2) DNA damage and the related events (activation of the DNA repairing enzyme poly(ADP)ribose polymerase with the associated depletion of NAD and ATP stores) in cultured endothelial cells exposed to the enzyme reaction hypoxanthine-xanthine oxidase (HX-XO) or pure H2O2. Catalase added in the extracellular phase completely prevented all of these oxidant-induced changes. O-phenanthroline afforded a complete protective effect against DNA strand breakage and the associated activation of the enzyme poly(ADP)ribose polymerase. By contrast, iron chelation was only partially effective in maintaining the cellular NAD and ATP contents, as well as the protein synthetic activity. In addition, the ATP depletion following oxidant injury was much more profound than NAD depletion. These results indicate that: 1) .OH radical was most likely the ultimate O2 species responsible for DNA damage and activation of poly(ADP)ribose polymerase; 2) both H2O2 and .OH radicals were involved in the other cytotoxic effects (inhibition of protein synthesis and reduction of NAD and ATP stores); and 3) NAD and ATP depletion did not result solely from activation of poly(ADP)ribose polymerase, but other mechanisms are likely to be involved. These observations are also compatible with the existence of a compartmentalized intracellular iron pool.  相似文献   

20.
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390–401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H2O2 [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414–419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号