首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas chromatography and mass spectrometry. In corn, suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW) cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow the isolation of endodermal cell walls. Similarly, exodermal walls could not be separated from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root (OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin was mainly composed of coumaric and ferulic acids. Aliphatic suberin monomers released from rice and corn belonged to five substance classes: primary fatty acids, primary alcohols, diacids, omega-hydroxy fatty acids, and 2-hydroxy fatty acids, with omega-hydroxy fatty acids being the most prominent substance class. Qualitative composition of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse, and (ii) besides monomers with chain lengths of C(16), a second maximum of C(28) was evident. In corn, C(24) monomers represented the most prominent class of chain lengths. When suberin quantities were related to surface areas of the respective tissues of interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice contained, on average, six-times more aliphatic suberin than those of corn. In endodermal cell walls, amounts were 34 times greater in rice than in corn. Significantly higher amounts of suberin detected in the apoplastic barriers of rice corresponded with a substantially lower root hydraulic conductivity (Lp(r)) compared with corn, when water flow was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is highly porous and permeable to water, it is argued that this holds true only for the endodermis. The results imply that some caution is required when discussing the role of suberin in terms of an efficient transport barrier for water. The simple view that only the quantity of suberin present is important, may not hold. A more detailed consideration of both the chemical nature of suberins and of the microstructure of deposits is required, i.e. how suberins impregnate wall pores.  相似文献   

2.
Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP‐binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP‐RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C28 and C30 fatty acids or ω‐OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.  相似文献   

3.
Zeier J  Schreiber L 《Plant physiology》1997,113(4):1223-1231
The occurrence of the biopolymers lignin and suberin was investigated with hypodermal (HCW) and endodermal cell walls (ECW) and xylem vessels (XV) isolated from Clivia miniata Reg. roots. Both biopolymers were detected in HCW and ECW, whereas in XV, typical aliphatic suberin monomers were missing and only representative lignin monomers such as guaiacyl (G) and syringyl (S) units could be detected. The absolute amounts of lignin were about one order of magnitude higher compared with suberin in both HCW and ECW. The ratios of the two aromatic lignin units (G/S) decreased from 39 in XV and 10 in HCW to about 1 in ECW, indicating significant differences in lignin structure and function between the three investigated samples. Additionally, compared with the detectable lignin-derived aromatic units G and S, significantly higher amounts of esterified p-coumaric acid-derived aromatic monomers were obtained with HCW, but not with ECW. This is interpreted as a functional adaption of HCW toward pathogen defense at the root/soil interface. The final aim of this study was to provide a thorough chemical characterization of the composition of HCW, ECW, and XV, which in turn will form the basis for a better understanding of the relevant barriers toward the passive, radial, and apoplastic diffusion of solutes from the soil across the root cortex into the root cylinder.  相似文献   

4.
The suberin content of young root parts of iron-deficient and iron-sufficient Phaseolus vulgaris L. cv Prélude was determined. The aliphatic components that could be released from suberin-enriched fractions by LiAID4 depolymerization were identified by gas chromatography-mass spectrometry. In the normal roots, the major aliphatic components were ω-hydroxy acids and dicarboxylic acids in which saturated C16 and monounsaturated C18 were the dominant homologues. Iron-deficient bean roots contained only 11% of the aliphatic components of suberin found in control roots although the relative composition of the constituents was not significantly affected by iron deficiency. Analysis of the aromatic components of the suberin polymer that could be released by alkaline nitrobenzene oxidation of bean root samples showed a 95% decrease in p-hydroxybenzaldehyde, vanillin, and syringaldehyde under iron-deficient conditions. The inhibition of suberin synthesis in bean roots was not due to a decrease in Fe-dependent ω-hydroxylase activity since normal ω-hydroxylation could be demonstrated, both in vitro with microsomal preparations and in situ by labeling of ω-hydroxy and dicarboxylic acids with [14C]acetate. The level of the isozyme of peroxidase that is specifically associated with suberization was suppressed by iron deficiency to 25% of that found in control roots. None of the other extracted isozymes of peroxidase was affected by the iron nutritional status. The activity of the suberin-associated peroxidase was restored within 3 to 4 days after application of iron to the growth medium. The results suggest that, in bean roots, iron deficiency causes inhibition of suberization by causing a decrease in the level of isoperoxidase activity which is required for polymerization of the aromatic domains of suberin, while the ability to synthesize the aliphatic components of the suberin polymer is not impaired.  相似文献   

5.
Although it is implied that suberized apoplastic barriers of roots negatively correlate with water and solute permeabilities, direct transport measurements across roots with altered amounts and compositions of aliphatic suberin are scarce. In the present study, hydroponically grown Arabidopsis wild types (Col8 and Col0) and different suberin mutants with altered amounts and/or compositions (horst, esb1-1, and esb1-2) were used to test this hypothesis. Detailed histochemical studies revealed late development of Casparian bands and suberin lamellae in the horst mutant compared with wild types and esb mutants. Suberin analysis with gas chromatography and mass spectrometry (GC-MS) showed that the horst mutant had ~33% lower amounts of aliphatic monomers than Col8 and Col0. In contrast, enhanced suberin mutants (esb1-1 and esb1-2) had twice the amount of suberin as the wild types. Correlative permeability measurements, which were carried out for the first time with a root pressure probe for Arabidopsis, revealed that the hydraulic conductivity (Lp(r)) and NaCl permeability (P(sr)) of the whole root system of the horst mutant were markedly greater than in the respective wild types. This was reflected by the total amounts of aliphatic suberin determined in the roots. However, increased levels of aliphatic suberin in esb mutants failed to reduce either water or NaCl permeabilities below those of the wild types. It was concluded that the simple view and the conventional assumption that the amount of root suberin negatively correlates with permeability may not always be true. The aliphatic monomer arrangement in the suberin biopolymer and its microstructure also play a role in apoplastic barrier formation.  相似文献   

6.
The composition of the aliphatic components of suberin in the stele and cortex of young corn (Zea mays L.) roots was determined by combined gas-liquid chromatography/mass spectrometry of the LiAlD4 depolymerization products. ω-Hydroxy acids were shown to be the major class of the aliphatic components of both the hypodermal (35%) and endodermal (28%) polymeric materials with the dominant chain length being C24 in the former and C16 in the latter. Nitrobenzene oxidation of the roots generated p-hydroxybenzaldehyde and vanillin with much less syringaldehyde. Electron microscopic examination of the hypodermal and endodermal cell walls from roots of corn plants grown in a Mg2+ -deficient (0.03 millimolar) nutrient solution showed that these walls were more heavily suberized than the analogous walls of roots from plants grown in normal (2 millimolar) Mg2+ levels. Analysis of the LiAlD4 depolymerization products of the suberin polymers from these roots showed that the roots grown in low Mg2+ had 3.5 times as much aliphatic suberin monomers on a weight basis as the roots from plants grown in nutrient with normal Mg2+ levels. Roots from plants grown in Mg2+ -deficient nutrient solution released 3.8 times the amount of aromatic aldehydes upon nitrobenzene oxidation as that released from normal roots. As the degree of Mg2+ deficiency of the nutrient solution was increased, there was an increase in the aliphatic and aromatic components characteristic of suberin. Thus, both ultrastructural and chemical evidence strongly suggested that Mg2+ deficiency resulted in increased suberization of the cell walls of both hypodermis and endodermis of Zea mays roots. The roots from Mg2+ -deficient plants also had a higher amount of peroxidase activity when compared to control roots.  相似文献   

7.
水花生(Alternanthera philoxeroides)因其表型可塑性、高生长速率和快速无性繁殖能适应水、陆生境.该文利用光学显微镜和荧光显微镜对水、陆生境的水花生不定根、茎解剖结构、组织化学特征及质外体通透性进行了研究.结果表明:(1)水生境下,其不定根皮层中具较大裂生型通气组织,无次生生长,内皮层具凯氏带且...  相似文献   

8.
Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.  相似文献   

9.
Wound‐induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very‐long‐chain fatty acids, 1‐alkanols, ω‐hydroxy fatty acids and α,ω‐dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound‐induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD‐treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD‐treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound‐induced suberization in potato.  相似文献   

10.
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress.  相似文献   

11.
The formation of suberized and lignified barriers in the exodermis is suggested to be part of a suite of adaptations to flooded or waterlogged conditions, adjusting transport of solutes and gases in and out of roots. In this study, the composition of apoplasmic barriers in hypodermal cell walls and oxygen profiles in roots and the surrounding medium of four Amazon tree species that are subjected to long-term flooding at their habitat was analyzed. In hypodermal cell walls of the deciduous tree Crateva benthami, suberization is very weak and dominated by monoacids, 2-hydroxy acids, and omega-hydroxycarboxylic acids. This species does not show any morphological adaptations to flooding and overcomes the aquatic period in a dormant state. Hypodermal cells of Tabernaemontana juruana, a tree which is able to maintain its leaf system during the aquatic phase, are characterized by extensively suberized walls, incrusted mainly by the unsaturated C(18) omega-hydroxycarboxylic acid and the alpha,omega-dicarboxylic acid analogon, known as typical suberin markers. Two other evergreen species, Laetia corymbulosa and Salix martiana, contained 3- to 4-fold less aliphatic suberin in the exodermis, but more than 85% of the aromatic moiety of suberin are composed of para-hydroxybenzoic acid, suggesting a function of suberin in pathogen defense. No major differences in the lignin content among the species were observed. Determination of oxygen distribution in the roots and rhizosphere of the four species revealed that radial loss of oxygen can be effectively restricted by the formation of suberized barriers but not by lignification of exodermal cell walls.  相似文献   

12.
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up‐regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel‐to‐CSs overlap was identified as an ABA‐driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin‐related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion‐selected electrode technique and PTS tracer confirmed that ABA‐promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.  相似文献   

13.
Suberin, a cell specific, wall-associated biopolymer, is formed during normal plant growth and development as well as in response to stress conditions such as wounding. It is characterized by the deposition of both a poly(phenolic) domain (SPPD) in the cell wall and a poly(aliphatic) domain (SPAD) thought to be deposited between the cell wall and plasma membrane. Although the monomeric components that comprise the SPPD and SPAD are well known, the biosynthesis and deposition of suberin is poorly understood. Using wound healing potato tubers as a model system, we have tracked the flux of carbon into the aliphatic monomers of the SPAD in a time course fashion. From these analyses, we demonstrate that newly formed fatty acids undergo one of two main metabolic fates during wound-induced suberization: (1) desaturation followed by oxidation to form the 18:1 ω-hydroxy and dioic acids characteristic of potato suberin, and (2) elongation to very long chain fatty acids (C20 to C28), associated with reduction to 1-alkanols, decarboxylation to n-alkanes and minor amounts of hydroxylation. The partitioning of carbon between these two metabolic fates illustrates metabolic regulation during wound healing, and provides insight into the organization of fatty acid metabolism.Key Words: suberin, potato, Solanum tuberosum, carbon flux analysis, abiotic stress  相似文献   

14.
Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20. Rice plants grown hydroponically or in soil for 1 month were subjected to both severe and moderate salinity stress. Apoplastic barriers in roots were visualized using fluorescence microscopy and their chemical composition determined by gas chromatography and mass spectrometry. Na+ content was estimated by flame photometry. Suberization of apoplastic barriers in roots of Pokkali was the most extensive of the three cultivars, while Na+ accumulation in the shoots was the least. Saline stress induced the strengthening of these barriers in both sensitive and tolerant cultivars, with increase in mRNAs encoding suberin biosynthetic enzymes being detectable within 30 min of stress. Enhanced barriers were detected after several days of moderate stress. Overall, more extensive apoplastic barriers in roots correlated with reduced Na+ uptake and enhanced survival when challenged with high salinity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

16.
Suberin is a specific cell wall-associated biopolymer characterized by the deposition of both a poly(phenolic) domain (SPPD) associated with the cell wall, and a poly(aliphatic) domain (SPAD) thought to be deposited between the cell wall and plasma membrane. In planta, suberin functions to prevent plants from desiccation and pathogen attack. Although the chemical identity of the monomeric components of the SPPD and SPAD are well known, their concerted biosynthesis and assembly into the suberin macromolecule is poorly understood. To expand our knowledge of suberin biosynthesis, a GC/MS-based metabolite profiling study was conducted, using wound healing potato (Solanum tuberosum L.) tubers as a model system. A time series of both non-polar and polar metabolite profiles were created, yielding a broad-based, dynamic picture of wound-induced metabolism, including suberization. Principal component analysis revealed a separation of metabolite profiles according to different suberization stages, with clear temporal differences emerging in the non-polar and polar profiles. In the non-polar profiles, suberin-associated aliphatics contributed the most to cluster formation, while a broader range of metabolites (including organic acids, sugars, amino acids and phenylpropanoids) influenced cluster formation amongst polar profiles. Pair-wise correlation analysis revealed strong correlations between known suberin-associated compounds, as well as between suberin-associated compounds and several un-identified metabolites in the profiles. These data may help to identify additional, as yet unknown metabolites associated with suberization process.  相似文献   

17.
The exodermis: a variable apoplastic barrier.   总被引:29,自引:0,他引:29  
The exodermis (hypodermis with Casparian bands) of plant roots represents a barrier of variable resistance to the radial flow of both water and solutes and may contribute substantially to the overall resistance. The variability is a result largely of changes in structure and anatomy of developing roots. The extent and rate at which apoplastic exodermal barriers (Casparian bands and suberin lamellae) are laid down in radial transverse and tangential walls depends on the response to conditions in a given habitat such as drought, anoxia, salinity, heavy metal or nutrient stresses. As Casparian bands and suberin lamellae form in the exodermis, the permeability to water and solutes is differentially reduced. Apoplastic barriers do not function in an all-or-none fashion. Rather, they exhibit a selectivity pattern which is useful for the plant and provides an adaptive mechanism under given circumstances. This is demonstrated for the apoplastic passage of water which appears to have an unusually high mobility, ions, the apoplastic tracer PTS, and the stress hormone ABA. Results of permeation properties of apoplastic barriers are related to their chemical composition. Depending on the growth regime (e.g. stresses applied) barriers contain aliphatic and aromatic suberin and lignin in different amounts and proportion. It is concluded that, by regulating the extent of apoplastic barriers and their chemical composition, plants can effectively regulate the uptake or loss of water and solutes. Compared with the uptake by root membranes (symplastic and transcellular pathways), which is under metabolic control, this appears to be an additional or compensatory strategy of plants to acquire water and solutes.  相似文献   

18.
Meyer CJ  Peterson CA  Bernards MA 《Planta》2011,233(4):773-786
Iris germanica roots develop a multiseriate exodermis (MEX) in which all mature cells contain suberin lamellae. The location and lipophilic nature of the lamellae contribute to their function in restricting radial water and solute transport. The objective of the current work was to identify and quantify aliphatic suberin monomers, both soluble and insoluble, at specific stages of MEX development and under differing growth conditions, to better understand aliphatic suberin biosynthesis. Roots were grown submerged in hydroponic culture, wherein the maturation of up to three exodermal layers occurred over 21 days. In contrast, when roots were exposed to a humid air gap, MEX maturation was accelerated, occurring within 14 days. The soluble suberin fraction included fatty acids, alkanes, fatty alcohols, and ferulic acid, while the suberin poly(aliphatic) domain (SPAD) included fatty acids, α,ω-dioic acids, ω-OH fatty acids, and ferulic acid. In submerged roots, SPAD deposition increased with each layer, although the composition remained relatively constant, while the composition of soluble components shifted toward increasing alkanes in the innermost layers. Air gap exposure resulted in two significant shifts in suberin composition: nearly double the amount of SPAD monomers across all layers, and almost three times the alkane accumulation in the first layer. The localized and abundant deposition of C18:1 α,ω-dioic and ω-OH fatty acids, along with high accumulation of intercalated alkanes in the first mature exodermal layer of air gap-exposed roots indicate its importance for water retention under drought compared with underlying layers and with entire layers developing under water.  相似文献   

19.
The composition of suberin and lignin in endodermal cell walls (ECWs) and in rhizodermal/hypodermal cell walls (RHCWs) of developing primary maize (Zea mays L.) roots was analysed after depolymerisation of enzymatically isolated cell wall material. Absolute suberin amounts related to root length significantly increased from primary ECWs (Casparian strips) to secondary ECWs (suberin lamella). During further maturation of the endodermis, reaching the final tertiary developmental state characterised by the deposition of lignified secondary cell walls (u-shaped cell wall deposits), suberin amounts remained constant. Absolute amounts of lignin related to root length constantly increased throughout the change from primary to tertiary ECWs. The suberin of Casparian strips contained high amounts of carboxylic and 2-hydroxy acids, and differed substantially from the suberin of secondary and tertiary ECWs, which was dominated by high contents of ω-hydroxycarboxylic and 1,ω-dicarboxylic acids. Furthermore, the chain-length distribution of suberin monomers in primary ECWs ranged from C16 to C24, whereas in secondary and tertiary ECWs a shift towards higher chain lengths (C16 to C28) was observed. The lignin composition of Casparian strips (primary ECWs) showed a high syringyl content and was similar to lignin in secondary cell walls of the tertiary ECWs, whereas lignin in secondary ECWs contained higher amounts of p-hydroxyphenyl units. The suberin and lignin compositions of RHCWs rarely changed with increasing root age. However, compared to the suberin in ECWs, where C16 and C18 were the most prominent chain lengths, the suberin of RHCWs was dominated by the higher chain lengths (C24 and C26). The composition of RHCW lignin was similar to that of secondary-ECW lignin. Using lignin-specific antibodies, lignin epitopes were indeed found to be located in the Casparian strip. Surprisingly, the mature suberin layers of tertiary ECWs contained comparable amounts of lignin-like epitopes. Received: 19 August 1998 / Accepted: 3 February 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号