首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid poplars (Populus tremula ×Populus tremuloides) have been genetically engineered viaAgrobacterium tumefaciens, to express a syntheticcry3Aa gene derived from the native Bacillusthuringiensis subsp. tenebrionis cry3Aa gene.The presence and the expression of the transgene have been verified in fourtransgenic poplar lines, using Southern, northern and western analyses. Thetransgenic poplar's toxicity towards the phytophagous beetleChrysomela tremulae (Coleoptera, Chrysomelidae) has beenassessed on six month-old greenhouse-grown selected plants in laboratoryconditions. Laboratory experiments consisted of feeding tests of fresh detachedleaves on C. tremulae at all developmental stages. Ourresults indicate that the transgenic poplar leaves, expressing a Cry3Aa proteinamount in a range of 0.05–0.0025% of total soluble protein, weredefinitely deleterious for C. tremulae, regardless of thedevelopmental stage.  相似文献   

2.
Zhang Y  Li H  Ouyang B  Lu Y  Ye Z 《Biotechnology letters》2006,28(16):1247-1253
Marker-free transgenic tomato plants harboring a synthetic Bacillus thuringiensis endotoxin gene, cryIAc, were obtained by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination system, in which the selectable marker neomycin phosphotransferase gene flanked by two directly oriented loxP sites was located between the cauliflower mosaic virus 35S promoter and a promoterless cryIAc. Upon induction by 2 μM β-estradiol, sequences encoding the selectable marker and cre sandwiched by two loxP sites were excised from the tomato genome, leading to activation of the downstream endotoxin gene cryIAc with high expression levels as shown by Northern blot and ELISA assay (250–790 ng g−1 fresh wt) in T1 generation. For transgenic line with single transgenic loci, 15% of T1 progenies were revealed marker-free. This autoexcision strategy provides an effective approach to eliminate a selectable marker gene from transgenic tomato, thus expediting the public acceptance of genetically modified crop.  相似文献   

3.
Transgenic rice (Oryza sativa) overexpressing Arabidopsis phytochrome A (phyA) was cultivated up to the T3 generation in paddy to elucidate the role of phyA in determining the plant architecture and the productivity of sunlight-grown rice plants. PhyA is light-labile and controls plant growth in response to the far-red light-dependent high-irradiance response as well as the very low fluence response. The Arabidopsis phyA gene linked to the rice rbcS promoter was transformed into embryogenic rice calli, and the calli were regenerated to whole plants. Compared to wild-type seedlings, the rbcS::PHYA transgenic seedlings contained more phyA when grown in the dark, and at least 10-fold more phyA when exposed to white light. When grown in paddy, the phyA transgenic plants in general exhibited reduced plant height (dwarfing), larger grain size, higher chlorophyll content, smaller tiller number, and low grain fertility compared to wild-type plants. The heading stage was not significantly changed. However, it is likely that a certain level of phyA is a prerequisite for induction of such changes. It is suggested that phyA overproduction in rice could be a useful tool to improve rice grain productivity by the larger grain size that increases grain yield and the dwarfing that tolerates lodging-associated damage.  相似文献   

4.
Summary Rice is one of the most important crops in the world with 35% of the total population (over two billion people) depending on it as their source of food. It is therefore essential to develop efficient methods for the transformation and regeneration of rice plants in order to delineate the exact regulatory sequences responsible for gene expression and to transfer beneficial genes into this plant. Here, for the first time, we present definitive evidence for the regeneration of a large number of transgenic rice plants after introduction of the bacterial -glucuronidase gene into rice protoplasts. The presence of integrated copies of this gene was detected in the genome of transgenic plants by DNA hybridization analysis. Furthermore, under the control of regulatory regions from a maize alcohol dehydrogenase sequence, -glucuronidase gene expression was detected in the roots of transgenic plants. This expression was stimulated up to six fold under anaerobic conditions.  相似文献   

5.
The concept of gene identification and cloning using insertional mutagenesis is well established. Many genes have been isolated using T-DNA transformation or transposable elements. Maize transposable elements have been introduced into heterologous plant species for tagging experiments. The behaviour of these elements in heterologous hosts shows many similarities with transposon behaviour in Zea mays. Site-specific recombination systems from lower organisms have also been shown to function efficiently in plant cells. Combining transposon and site-specific recombination systems in plants would create the possibility to induce chromosomal deletions. This transposition-deletion system could allow the screening of large segments of the genome for interesting genes and may also permit the cloning of the DNA corresponding to the deleted material by the same site-specific recombination reaction in vitro. This methodology may provide a unique means to construct libraries of large DNA clones derived from defined parts of the genome, the phenotypic contribution of which is displayed by the mutant carrying the deletion.  相似文献   

6.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

7.
The environmental release of genetically engineered (transgenic) plants may be accompanied by ecological effects including changes in the plant-associated microflora. A field release of transgnic potato plants that produce the insecticidal endotoxin ofBacillus thuringiensis var.tenebrionis (Btt) was monitored for changes in total bacterial and fungal populations, fungal species diversity and abundance, and plant pathogen levels. The microflora on three phenological stages of leaves (green, yellow and brown) were compared over the growing season (sample days 0, 21, 42, 63 and 98) for transgenic potato plants, commercial Russet Burbank potato plants treated with systemic insecticide (Di-Syston) and commercial Russet Burbank potato plants treated with microbialBtt (M-Trak). In addition, plant and soil assays were performed to assess disease incidence ofFusarium spp.,Pythium spp.,Verticillium dahliae, potato leaf roll virus (PLRV) and potato virus Y (PVY). Few significant differences in phylloplane microflora among the plant types were observed and none of the differences were persisent. Total bacterial populations on brown leaves on sample day 21 and on green leaves on sample day 42 were significantly higher on the transgenic potato plants. Total fungal populations on gree leaves on sample day 63 were significantly different among the three plant types; lowest levels were on the commerical potato plants treated with systemic insecticide and highest levels were on the commercial potato plants treated with microbialBtt. Differences in fungal species assemblages and diversity were correlated with sampling dates, but relatively consistent among treatments.Alternaria alternata, a common saprophyte on leaves and in soil and leaf litter, was the most commonly isolated fungus species for all the plant treatments. Rhizosphere populations of the soilborne pathogensPythium spp.,Fusarium spp. andV. dahliae did not differ between the transgenic potato plants and the commercial potato plants treated with systemic insecticide. The incidence of tuber infection at the end of the growing season by the plant pathogenV. dahliae was highest for the transgenic potato plants but this difference was related to longer viability of the transgenic potato plants. This difference in longevity between the transgenic potato plants and the commercial + systemic insecticide potato plants also made comparison of the incidence of PVY and PLRV problematic. Our results indicate that under field conditions the microflora of transgenicBtt-producing potato plants differed minimally from that of chemically and microbially treated commerical potato plants.  相似文献   

8.
Transgenic maize plants expressing a fungal phytase gene   总被引:12,自引:0,他引:12  
Maize seeds are the major ingredient of commercial pig and poultry feed. Phosphorus in maize seeds exists predominantly in the form of phytate. Phytate phosphorus is not available to monogastric animals and phosphate supplementation is required for optimal animal growth. Undigested phytate in animal manure is considered a major source of phosphorus pollution to the environment from agricultural production. Microbial phytase produced by fermentation as a feed additive is widely used to manage the nutritional and environmental problems caused by phytate, but the approach is associated with production costs for the enzyme and requirement of special cares in feed processing and diet formulation. An alternative approach would be to produce plant seeds that contain high phytase activities. We have over-expressed Aspergillus niger phyA2 gene in maize seeds using a construct driven by the maize embryo-specific globulin-1 promoter. Low-copy-number transgenic lines with simple integration patterns were identified. Western-blot analysis showed that the maize-expressed phytase protein was smaller than that expressed in yeast, apparently due to different glycosylation. Phytase activity in transgenic maize seeds reached approximately 2,200 units per kg seed, about a 50-fold increase compared to non-transgenic maize seeds. The phytase expression was stable across four generations. The transgenic seeds germinated normally. Our results show that the phytase expression lines can be used for development of new maize hybrids to improve phosphorus availability and reduce the impact of animal production on the environment.  相似文献   

9.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

10.
Gene trap vectors have been used in insertional mutagenesis in animal systems to clone genes with interesting patterns of expression. These vectors are designed to allow the expression of a reporter gene when the vector inserts into a transcribed region. In this paper we examine alternative splicing events that result in the expression of a GUS reporter gene carried on a Ds element which has been designed as a gene trap vector for plants. We have developed a rapid and reliable method based on PCR to study such events. Many splice donor sites were observed in the 3 Ac border. The relative frequency of utilisation of certain splice donor and acceptor sites differed between tobacco and Arabidopsis. A higher stringency of splicing was observed in Arabidopsis.  相似文献   

11.
The japonica rice variety Taipei 309 was cotransformed by particle bombardment of immature embryo-derived embryogenic calli with a modified δ-endotoxin gene cryIA(b) of Bacillus thuringiensis (Bt) under the control of the rice Actin1 promoter, and the hygromycin resistance gene, hph driven by the CaMV35S promoter. Selected transgenic rice plants showed enhanced insecticidal activity against yellow stem borer (Scirpophaga incertulas), with mortality rates reaching up to 100% in a bioassay with cut stems. Introduction and expression of the Actin1 promoter-Bt gene into rice provides japonica rice germplasm resistant to insect attack. Received: 21 March 1997 / Revision received: 23 June 1997 / Accepted: 5 July 1997  相似文献   

12.
A synthetic version of the cry1Ab gene from Bacillus thuringiensis (Bt) was introduced into white spruce (Picea glauca) by microprojectile bombardment. A plasmid carrying the cry1Ab gene, driven by a ubiquitin (maize) promoter, was co-transferred with a plasmid containing the gus–nptII fusion gene as a screenable selection marker. Molecular analysis of the transgenic lines showed a high level (more than 90%) of co-integration of the cry1Ab gene with the screenable marker. A wide range of expression levels of the cry1Ab gene and corresponding endotoxin was obtained. Accumulation of the Cry1Ab protein was evaluated in embryogenic tissue, the needles of somatic seedlings and in the needles of 5-year-old field-grown trees of individual lines. Laboratory and field insect feeding trials suggest that several spruce transgenic lines were lethal to spruce budworm larvae.  相似文献   

13.
Summary A simple, nondestructive kanamycin spraying assay for detecting neomycin phosphotransferase II activity in tomato has been developed. This assay does not require the use of tissue culture or biochemical methods, but allows transgenic and non-transgenic tomato plants to be distinguished directly at the plant level in the green-house. Its potential applications in large-scale genetic analyses are discussed.  相似文献   

14.
15.
16.
The recovery of transgenic rice plants expressing a number of exogenous genes was reported previously. Using immature embryo explants as the target tissue, plasmids containing both selectable and screenable marker genes were introduced into elite rice varieties via electric-discharge particle acceleration. Co-integration, copy number, expression, and inheritance of these genes were analyzed. A 100% co-integration frequency was confirmed by Southern-blot analyses of R0 plants. The majority of transgenic plants contained between one and ten copies of exogenous DNA and molecular and genetic analyses of progeny indicated that all copies in almost all R0 plants were inherited as a single dominant hemizygous locus. Co-expression of unselected genes ranged from 30–66% for gus/hmr constructs, depending on the promotor used, and up to 90% for bar/hmr constructs. The integrative structures of two unlinked transgenic loci of a rare R0 plant were analyzed in detail by Southern-blot analysis of its progeny.  相似文献   

17.
The objective of this study was to assess the frequency of pollen-mediated gene flow from a transgenic rice line, harbouring the gusA and the bar genes encoding respectively, -glucuronidase and phosphinothricin acetyl transferase as markers, to the red rice weed and conventional rice in the Spanish japonica cultivar Senia. A circular field trial design was set up to investigate the influence of the wind on the frequency of pollination of red rice and conventional rice recipient plants with the transgenic pollen. Frequencies of gene flow based on detection of herbicide resistant, GUS positive seedlings among seed progenies of recipient plants averaged over all wind directions were 0.036 ± 0.006% and 0.086 ± 0.007 for red rice and conventional rice, respectively. However, for both red rice and conventional rice, a clear asymmetric distribution was observed with pollination frequency favoured in plants placed under the local prevailing winds. Southern analyses confirmed the hemizygous status and the origin of the transgenes in progenies of surviving, GUS positive plants. Gene flow detected in conventional rice planted at 1, 2, 5 and 10 m distance revealed a clear decrease with increasing distance which was less dramatic under the prevailing wind direction. Consequences of these findings for containment of gene flow from transgenic rice crops to the red rice weed are discussed. The precise determination of the local wind conditions at flowering time and pollination day time appear to be of primary importance for setting up suitable isolation distances.  相似文献   

18.
19.
Transgenic tobacco plants that express the bacterial nahG gene encoding salicylate hydroxylase have been shown to accumulate very little salicylic acid and to be defective in their ability to induce systemic acquired resistance (SAR). In recent experiments using transgenic NahG tobacco and Arabidopsis plants, we have also demonstrated that salicylic acid plays a central role in both disease susceptibility and genetic resistance. In this paper, we further characterize tobacco plants that express the salicylate hydroxylase enzyme. We show that tobacco mosaic virus (TMV) inoculation of NahG tobacco leaves induces the accumulation of the nahG mRNA in the pathogen infected leaves, presumably due to enhanced stabilization of the bacterial mRNA. SAR-associated genes are expressed in the TMV-infected leaves, but this is localized to the area surrounding necrotic lesions. Localized acquired resistance (LAR) is not induced in the TMV-inoculated NahG plants suggesting that LAR, like SAR, is dependent on SA accumulation. When SA is applied to nahG-expressing leave's SAR gene expression does not result. We have confirmed earlier reports that the salicylate hydroxylase enzyme has a narrow substrate specificity and we find that catechol, the breakdown product of salicylic acid, neither induces acquired resistance nor prevents the SA-dependent induction of the SAR genes.  相似文献   

20.
Transgenic cotton lines were developed for high-level expression of a synthetic cry1EC gene from a wound inducible promoter. The tobacco pathogenesis related promoter PR-1a was modified by placing CaMV35S promoter on its upstream in reverse orientation. The resultant chimeric promoter CaMV35S(r)PR-1a expressed constitutively and was further up-regulated at the site of feeding by insects. It was induced more rapidly by treatment with salicylic acid (SA). The CaMV35S(r)PR-1a cry1EC expressing transgenic lines of cotton showed 100% mortality of Spodoptera litura larvae. The tightly regulated low-level expression of PR-1a was modified to a highly expressing constitutive expression by CaMV35S placed in reverse orientation. Salicylic acid treatment and wounding enhanced the expression further by the chimeric promoter. The leaves expressed more δ-endotoxin around the sites of insect bites. The levels of expression and induction varied among different transgenic lines, suggesting position effect. Some of the transgenic lines that expressed Cry1EC from the chimeric promoter at a low level also showed 100% mortality when induced with salicylic acid. A highly expressing insect bite and wound inducible promoter is desirable for developing insect resistant transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号