首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells.  相似文献   

2.
This study was conducted to investigate the mechanism of interleukin-1beta (IL-1beta)-induced IL-6 production in human osteoblasts (MG-63 cells). Stimulation with IL-1beta resulted in the production of IL-6 and prostaglandin E(2) (PGE(2)). IL-6 production gradually increased and peaked 96 h after stimulation. IL-6 mRNA was detected between 4 and 72 h after IL-1beta stimulation. The patterns of PGE(2) production and the expression of cyclooxygenase-2 (COX-2) mRNA were biphasic after stimulation. Actinomycin D, cycloheximide, indomethacin, and NS-398 (COX-2 inhibitor) suppressed the production of IL-6 and PGE(2). Anti-PGE(2) antibody markedly reduced the production of IL-6. In addition, stimulation with 17-phenyl-PGE(2), a PGE receptor-1 (EP-1 receptor) agonist, led to the expression of IL-6 mRNA after pretreatment with IL-1beta. These findings indicate that IL-1beta-induced IL-6 production in MG-63 cells involves the following sequence of steps: IL-1beta-induced COX-2 activation, PGE(2) production, and EP-1 receptor signaling prior to IL-6 production.  相似文献   

3.
4.
The purpose of the present study was to investigate the involvement of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tyrosine kinase on prostaglandin E2 (PGE2) production in human gingival fibroblasts stimulated by interleukin-1beta (IL-1beta) and/or epidermal growth factor (EGF). The cytokine IL-1beta and to a lesser extent EGF, enhanced COX-2 mRNA levels in gingival fibroblasts. Simultaneous treatment with EGF and IL-1beta resulted in enhanced COX-2 mRNA levels accompanied by a synergistic stimulation of PGE2 biosynthesis compared to the cells treated with IL-1beta or EGF alone. Neither IL-1beta EGF nor the combination of IL-1beta and EGF enhanced COX-1 mRNA levels in gingival fibroblasts. The tyrosine kinase inhibitors, Herbimycin A and PD 153035 hydrochloride, reduced COX-2 mRNA levels as well as PGE2 production induced by IL-1beta or the combination of IL-1beta and EGF whereas COX-1 mRNA levels were not affected. Furthermore, the COX-2 specific inhibitor, NS-398, abolished the PGE2 production induced by IL-1beta, EGF, or the combination. These results indicate that the synergy between IL-1beta and EGF on PGE2 production is due to an enhanced gene expression of COX-2 and that tyrosine kinase(s) are involved in the signal transduction of COX-2 in gingival fibroblasts.  相似文献   

5.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

6.
We recently reported that lipoteichoic acid (LTA), a cell wall component of the gram-positive bacterium Staphylococcus aureus, stimulated inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. This study was carried out to further investigate the roles of COX-2 and prostaglandin E2 (PGE2) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Treatment of RAW 264.7 macrophages with LTA caused a time-dependent increase in PGE2 release. LTA-induced iNOS expression and NO release were inhibited by a non-selective COX inhibitor (indomethacin), a selective COX-2 inhibitor (NS-398), an adenylyl cyclase (AC) inhibitor (dideoxyadenosine, DDA), and a protein kinase A (PKA) inhibitor (KT-5720). Furthermore, both PGE2 and the direct PKA activator, dibutyryl-cAMP, also induced iNOS expression in a concentration-dependent manner. Stimulation of RAW 264.7 macrophages with LTA, PGE2, and dibutyryl-cAMP all caused p38 MAPK activation in a time-dependent manner. LTA-mediated p38 MAPK activation was inhibited by indomethacin, NS-398, and SB 203580, but not by PD 98059. The PGE2-mediated p38 MAPK activation was inhibited by DDA, KT-5720, and SB 203580, but not by PD 98059. LTA caused time-dependent activation of the nuclear factor-kappaB (NF-kappaB)-specific DNA-protein complex formation. The LTA-induced increase in kappaB-luciferase activity was inhibited by indomethacin, NS-398, KT-5720, and a dominant negative mutant of p38 alphaMAPK (p38 alphaMAPK DN). These results suggest that LTA-induced iNOS expression and NO release involve COX-2-generated PGE2 production, and AC, PKA, p38 MAPK, and NF-kappaB activation in RAW 264.7 macrophages.  相似文献   

7.
Given that preliminary work has indicated that prostaglandins can play a role in modulating dendritic cell (DC) functions, we addressed the prostaglandin E(2) (PGE(2)) biosynthetic capacity of mouse DC produced in vitro from bone marrow cells. We observed production of significant amounts of PGE(2), which was reduced by at least 80% when cells were incubated in the presence of indomethacin, a COX-1 preferential inhibitor. Indeed, when tested by Western blot analysis with specific COX-1 and COX-2 antibodies, only COX-1 expression could be detected in the bone marrow (BM)-DC. For lipopolysaccharide (LPS)-treated BM-DC, inhibition of PGE(2) production by indomethacin or by NS-398 (a COX-2-selective inhibitor) used alone was less potent. After LPS treatment of BM-DC, COX-1 and COX-2 expression was potent, and inhibition of PGE(2) synthesis needed the presence of both indomethacin and NS-398. We also observed that exogenous PGE(2) diminished the expression of MHC class II molecules by BM-DC and that prostaglandin and indomethacin had antagonistic effects on cell proliferation during the mixed lymphocyte reaction using BM-DC as stimulatory cells. This assessment of PGE(2) suggests that endogenous PGE(2) produced by DC might play a role as an immunomodulating factor during the immune response. This hypothesis is sustained by the fact that IL-12 production by BM-DC is modulated by exogenous PGE(2) as well as endogenous prostaglandin, since either the addition of exogenous PGE(2) or the presence of LPS (which increases endogenous PGE(2) synthesis) decreases IL-12 production, while NS-398 (which decreases LPS-induced PGE(2) synthesis) increases IL-12 synthesis.  相似文献   

8.
PG added to cell culture profoundly affect the in vitro maturation and function of monocyte-derived dendritic cells (MDC). Because unstimulated monocytes express cyclooxygenase (COX)-1, and COX-2 when activated, we examined whether MDC express these enzymes and produce prostanoids that autoregulate maturation and IL-12 production. Immature MDC (I-MDC) and mature MDC express COX-1, but, unlike monocytes, both MDC populations constitutively express COX-2. However, COX-2 regulation in both MDC populations differs from monocytes, as IL-4 does not suppress enzyme expression. COX-2 is functional in MDC as a specific inhibitor, NS-398, significantly reduces PGE(2) production. I-MDC undergoing maturation with soluble CD40 ligand (sCD40L) increase PGE(2) synthesis, but prostanoid synthesis is switched to COX-1. However, with IFN-gamma present, sCD40L-stimulated PG metabolism is redirected to COX-2, and PGE(2) synthesis increases severalfold. Endogenous PG production by MDC does not regulate CD40, CD80, CD86, or HLA DR expression; however, it does promote MDC maturation, as NS-398 significantly reduces CD83 expression in I-MDC matured with sCD40L/IFN-gamma. PG produced through COX-2 also autoregulate IL-12, but the effects are dependent on the MDC maturation state. Blocking COX-2 reduces I-MDC secretion of IL-12p40, whereas it increases IL-12p40 and p70 production by maturing MDC. COX-2-mediated PG production impacts MDC function as maturing these cells in the presence of NS-398 yields MDC that stimulate significantly more IFN-gamma in an allogeneic mixed lymphocyte response than MDC matured without this inhibitor. These studies demonstrate that MDC express both COX isoforms constitutively and produce prostanoids, which autoregulate their maturation and function.  相似文献   

9.
Prostaglandins regulate melanoma-induced cytokine production in macrophages   总被引:2,自引:0,他引:2  
Tumor-secreted products can affect macrophage cytokine expression and in that way alter the immune response. Prostaglandins (PGs) are found in the tumor microenvironment and have been associated with local and regional immunosuppression. We investigated whether tumor-secreted factors could induce PG synthesis in macrophages and whether these PGs could alter macrophage production of immunoregulatory cytokines. In both murine and human models, melanoma conditioned medium (MCM) induced macrophage production of PGE(2), IL-6, and TNF-alpha. PGE(2) production increased over 24 h and was accompanied by an increase in cyclooxygenase-2 (COX-2) expression, while COX-1 expression remained unchanged. In the presence of 10 microM NS398, a selective COX-2 inhibitor, MCM-stimulated PGE(2) synthesis was almost completely suppressed, while production of IL-6 and TNF-alpha proteins and mRNA also was partially abrogated. In the murine model, 200 microM NS398 resulted in more significant inhibition of cytokine protein and mRNA production. Although MCM induced NFkappaB and NF-IL-6 activation, neither dose of NS398 altered this effect. We conclude that melanoma-secreted products stimulate COX-2 expression and PGE(2) synthesis in macrophages and that inhibition of COX-2-derived PG synthesis results in partial abrogation of macrophage cytokine production.  相似文献   

10.
11.
VEGF is a highly specific stimulator of endothelial cells and may play an important role in angiogenesis in the process of tissue regeneration. We previously showed that cyclooxygenase-2 (COX-2) expressed in mesenchymal cells of the ulcer bed is involved in the ulcer repair process. To clarify the role of COX-2 in angiogenesis during gastric ulcer healing, we investigated the relation between COX-2 expression and VEGF production in human gastric fibroblasts in vivo and in vitro. Gastric fibroblasts were cultured in RPMI 1640 with and without IL-1alpha or IL-1beta in the presence or absence of NS-398, a selective COX-2 inhibitor. Supernatant VEGF and PGE(2) concentrations were measured by enzyme-linked immunosorbent assay. COX-2 expression in fibroblasts was determined by Western blot analysis. VEGF and COX-2 expression in surgical resections of human gastric ulcer tissue was examined immunohistochemically. IL-1 dose dependently enhanced VEGF release in cultured gastric fibroblasts after a 24-h stimulation. IL-1 also stimulated PGE(2) production in gastric fibroblasts via COX-2 induction. NS-398 significantly suppressed VEGF and PGE(2) release from IL-1-stimulated gastric fibroblasts; concurrent addition of PGE(2) restored NS-398-inhibited VEGF release. COX-2 and VEGF immunoreactivity were colocalized in fibroblast-like cells in the ulcer bed of gastric tissues. These results suggest that COX-2 plays a key role in VEGF production in gastric fibroblasts stimulated by IL-1 in vitro and that angiogenesis induced by the COX-2-VEGF pathway might be involved in gastric ulcer healing.  相似文献   

12.
PGE(2) is a well-known immunomodulator produced in the immune response by APCs, such as dendritic cells (DCs), the most potent APC of the immune system. We investigated the PGE(2) biosynthetic capacity of bone marrow-derived DC (BM-DC) and the effects of PG on the APC. We observed that BM-DC produce PGE(2) and other proinflammatory mediators, such as leukotriene B(4) and NO, after LPS exposure. Constitutively present in BM-DC, cyclooxygenase (COX)-1 did not contribute significantly to the total pool of PGE(2) compared with the LPS-induced COX-2-produced PGE(2). Treatment of BM-DC with exogenous PGE(2) induced the production of large amounts of IL-10 and less IL-12p70. In addition, selective inhibition of COX-2, but not COX-1, was followed by significant decrements in PGE(2) and IL-10, a concomitant restoration of IL-12 production, and an enhancement of DC stimulatory potential. In contrast, we found no demonstrable role for leukotriene B(4) or NO. In view of the potential of PGE(2) to stimulate IL-10, we examined the possibility that the suppressive effect of PGE(2) is mediated via IL-10. We found that exogenous IL-10 inhibits IL-12p70 production in the presence of NS-398, a COX-2 selective inhibitor, while the inhibitory effects of PGE(2) were totally reversed by anti-IL-10. We conclude that COX-2-mediated PGE(2) up-regulates IL-10, which down-regulates IL-12 production and the APC function of BM-DC.  相似文献   

13.
Interleukin-10 (IL-10), produced by Th2 helper T cells, B cells, and macrophages, can inhibit cytokine production by Th1 cells and enhance B-cell proliferation and differentiation. Here, we show that peripheral blood mononuclear cells (PBMCs) from bovine leukemia virus-infected animals with late-stage disease express considerably more IL-10 mRNA than animals that are not infected or that are in the early stages of disease. In contrast, the quantities of type 1 cytokines, IL-2 and gamma interferon, decrease with disease progression. In addition, we observed that IL-10 is expressed principally by monocytes/macrophages, not B lymphocytes, in persistently lymphocytotic animals. This observation supports a role for monocytes/macrophages in progression of bovine leukemia virus infection and, of importance, indicates that proliferating B cells are not the source of IL-10 expression. These findings suggest that IL-10 produced by monocytes/macrophages may influence the progression of bovine leukosis in animals that develop persistent lymphocytosis of B cells or B-cell lymphosarcoma.  相似文献   

14.
15.
The significance of cyclooxygenase-2 (COX-2) expression in ovarian cancer has been discussed. In this study, we found increased expression of COX-1 mRNA and protein in three out of 10 ovarian cancer cell lines. Prostaglandin E 2 (PGE2) production was elevated in these three cell lines, but not in other seven cell lines. COX-2 protein was not detected in any of the cell lines. Cytosolic prostaglandin E synthase (cPGES) mRNA and protein were detected in all 10 cell lines. Membrane-associated PGES-1 (mPGES-1) was detected in some of the ovarian cell lines, but its presence did not correspond with PGE2 production. In contrast, mPGES-2 mRNA and protein were detected in all 10 cell lines. A nonselective COX inhibitor (indometacin) and a selective COX-1 inhibitor (SC-560) strongly inhibited PGE2 production by the three cell lines, while selective COX-2 inhibitors (NS-398 and rofecoxib) did not inhibit PGE2 production. In addition, increased expression of COX-1, not COX-2 protein was observed in the mass of ovarian cancer tissues from 22 patients when compared with that in normal tissue. These findings suggest that COX-1 might be a major enzyme regulating PGE2 production in ovarian cancer cells.  相似文献   

16.
Helicobacter pylori infection causes a Th1-driven mucosal immune response. Cyclooxygenase (COX)-2 is up-regulated in lamina propria mononuclear cells in H. pylori gastritis. Because COX-2 can modulate Th1/Th2 balance, we determined whether H. pylori activates COX-2 in human PBMCs, and the effect on cytokine and proliferative responses. There was significant up-regulation of COX-2 mRNA and PGE(2) release in response to H. pylori preparations. Addition of COX-2 inhibitors or an anti-PGE(2) Ab resulted in a marked increase in H. pylori-stimulated IL-12 and IFN-gamma production, and a decrease in IL-10 levels. Addition of PGE(2) or cAMP, the second messenger activated by PGE(2), had the opposite effect. Similarly, stimulated cell proliferation was increased by COX-2 inhibitors or anti-PGE(2) Ab, and was decreased by PGE(2). Our findings indicate that COX-2 has an immunosuppressive role in H. pylori gastritis, which may protect the mucosa from severe injury, but may also contribute to the persistence of the infection.  相似文献   

17.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

18.
We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1β-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE2 without modulation of expression of COX-2 in IL-1β-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1β-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE2 production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE2 and proliferation of IL-1β-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1β-stimulated VSMC. NS-398 inhibited proliferation of IL-1β-stimulated VSMC in a HbO2-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1β-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.  相似文献   

19.
Polymorphonuclear neutrophils (PMNs) play a critical role in intestinal mucosal injury and repair. To study effects of PMNs on acutely injured mucosa, we applied PMNs isolated from circulation or peritoneal fluid from animals with chemically induced peritonitis to ischemia-injured porcine ileal mucosa. In preliminary experiments, PMNs enhanced recovery of transepithelial electrical resistance (TER), and this action was inhibited by pretreatment with the nonselective cyclooxygenase (COX) inhibitor indomethacin. Because COX-2 is upregulated by inflammatory mediators such as IL-1beta, which is released by PMNs, we postulated that PMNs enhance recovery of ischemia-injured mucosa by a pathway involving IL-1beta and COX-2. Application of 5 x 10(6) PMNs to the serosal surface of ischemia-injured mucosa significantly enhanced recovery of TER (P < 0.05), an effect that was inhibited by the selective COX-2 inhibitor NS-398 (5 microM) and by an IL-1beta receptor antagonist (0.1 mg/ml). Addition of 10 ng/ml IL-1beta to the serosal surface of injured tissues caused a significant increase in TER (P < 0.05) that was inhibited by pretreatment with NS-398. Western blot analysis of mucosal homogenates revealed dramatic upregulation of COX-2 in response to IL-1beta or peritoneal PMNs, and the latter was inhibited by an IL-1beta receptor antagonist. Real-time PCR revealed that increased mRNA COX-2 expression preceded increased COX-2 protein expression in response to IL-1beta. We concluded that PMNs augment recovery of TER in ischemia-injured ileal mucosa via IL-1beta-dependent upregulation of COX-2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号