首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics.

Methodology/Principal Findings

Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99.

Conclusions/Significance

Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance.  相似文献   

2.
During the 2015–2017 Zika epidemic, dengue and chikungunya–two other viral diseases with the same vector as Zika–were also in circulation. Clinical presentation of these diseases can vary from person to person in terms of symptoms and severity, making it difficult to differentially diagnose them. Under these circumstances, it is possible that numerous cases of Zika could have been misdiagnosed as dengue or chikungunya, or vice versa. Given the importance of surveillance data for informing epidemiological analyses, our aim was to quantify the potential extent of misdiagnosis during this epidemic. Using basic principles of probability and empirical estimates of diagnostic sensitivity and specificity, we generated revised estimates of reported cases of Zika that accounted for the accuracy of diagnoses made on the basis of clinical presentation with or without laboratory confirmation. Applying this method to weekly reported case data from 43 countries throughout Latin America and the Caribbean, we estimated that 944,700 (95% CrI: 884,900–996,400) Zika cases occurred when assuming all confirmed cases were diagnosed using molecular methods versus 608,400 (95% CrI: 442,000–821,800) Zika cases that occurred when assuming all confirmed cases were diagnosed using serological methods. Our results imply that misdiagnosis was more common in countries with proportionally higher reported cases of dengue and chikungunya, such as Brazil. Given that Zika, dengue, and chikungunya appear likely to co-circulate in the Americas and elsewhere for years to come, our methodology has the potential to enhance the interpretation of passive surveillance data for these diseases going forward. Likewise, our methodology could also be used to help resolve transmission dynamics of other co-circulating diseases with similarities in symptomatology and potential for misdiagnosis.  相似文献   

3.
Zika virus (ZIKV) and chikungunya virus (CHIKV) were recently introduced into the Americas resulting in significant disease burdens. Understanding their spatial and temporal dynamics at the subnational level is key to informing surveillance and preparedness for future epidemics. We analyzed anonymized line list data on approximately 105,000 Zika virus disease and 412,000 chikungunya fever suspected and laboratory-confirmed cases during the 2014–2017 epidemics. We first determined the week of invasion in each city. Out of 1,122, 288 cities met criteria for epidemic invasion by ZIKV and 338 cities by CHIKV. We analyzed risk factors for invasion using linear and logistic regression models. We also estimated that the geographic origin of both epidemics was located in Barranquilla, north Colombia. We assessed the spatial and temporal invasion dynamics of both viruses to analyze transmission between cities using a suite of (i) gravity models, (ii) Stouffer’s rank models, and (iii) radiation models with two types of distance metrics, geographic distance and travel time between cities. Invasion risk was best captured by a gravity model when accounting for geographic distance and intermediate levels of density dependence; Stouffer’s rank model with geographic distance performed similarly well. Although a few long-distance invasion events occurred at the beginning of the epidemics, an estimated distance power of 1.7 (95% CrI: 1.5–2.0) from the gravity models suggests that spatial spread was primarily driven by short-distance transmission. Similarities between the epidemics were highlighted by jointly fitted models, which were preferred over individual models when the transmission intensity was allowed to vary across arboviruses. However, ZIKV spread considerably faster than CHIKV.  相似文献   

4.
  1. SARS-CoV-2, the virus that caused the COVID-19 pandemic, is genomically similar to a SARS-like beta-coronavirus found in Asian rhinolophid bats. This evolutionary relationship impressed the global media, which then emphasised bats as key actors in the spillover that resulted in the pandemic. In this study, we highlight changes in the traditional and new media coverage of bats and in Internet search volumes that occurred since the beginning of the COVID-19 pandemic in 2020.
  2. We analysed Google and Wikipedia searches for bats and coronaviruses in 21 countries and eight languages, as well as television broadcasts in the USA, some of which have global coverage, between January 2016 and December 2020. In January 2020, the amount of television news about bats boomed, and news associated with the term ‘bat’ shifted to COVID-19-related topics. A nearly identical pattern was observed in Google searches during 2020 at the global scale. The daily time series of television coverage and Internet search volumes on bats and coronavirus in the USA covaried in the first quarter of 2020, in line with the existence of a media bubble. Time-series analysis revealed that both the Google Trends index and visits to Wikipedia pages about bats boomed in early 2020, despite the fact that this time of year is usually characterised by low search volumes.
  3. Media coverage emphasised, correctly or not, the role of bats in the COVID-19 pandemic and amplified public interest in bats worldwide. The public image of these mammals, in many cases threatened and important ecosystem service providers, was seriously compromised. We therefore recommend that policymakers and journalists prioritise scientifically accurate communication campaigns about bats, which would help counteract the surge in bat persecution, and leverage interest towards positive human–bat interactions.
  相似文献   

5.
Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google Trends, and the World Health Organization''s FluNet data. We estimate that concern over “swine flu,” as measured by Google Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases. Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires consideration of risk communication.  相似文献   

6.
Recent analyses of internet search volume hypothesized a decline of public interest toward themes related to environment, biodiversity conservation and fishery. These analyses were based on Google Trends, which is a measure of how frequently a term is searched in Google, in proportion to the total of searches performed. Google Trends is a measure of relative search, and this may make difficult assessing temporal trends. I evaluated whether relative declines in internet search volumes represent genuine decline in interest toward environmental-related themes, by comparing trends of terms representing various themes, including environment, computer science, other disciplines (astrophysics) and leisure. Similar values of relative decline were detected for environmental terms, for computer science terms, and for other scientific disciplines. Conversely, an increase was observed for leisure related terms. This suggests that interest toward the environment is not truly decreasing. The apparent decline of environmental and scientific terms is most likely caused by the increasing use of internet for aims unrelated to science and technology, such as leisure. Internet search tools are a powerful source of information, but users should be aware of the complexity of analysing their data: using unrelated terms as benchmark may help to identify genuine trends.  相似文献   

7.
With the continuous growth of internet usage, Google Trends has emerged as a source of information to investigate how social trends evolve over time. Knowing how the level of interest in conservation topics—approximated using Google search volume—varies over time can help support targeted conservation science communication. However, the evolution of search volume over time and the mechanisms that drive peaks in searches are poorly understood. We conducted time series analyses on Google search data from 2004 to 2013 to investigate: (i) whether interests in selected conservation topics have declined and (ii) the effect of news reporting and academic publishing on search volume. Although trends were sensitive to the term used as benchmark, we did not find that public interest towards conservation topics such as climate change, ecosystem services, deforestation, orangutan, invasive species and habitat loss was declining. We found, however, a robust downward trend for endangered species and an upward trend for ecosystem services. The quantity of news articles was related to patterns in Google search volume, whereas the number of research articles was not a good predictor but lagged behind Google search volume, indicating the role of news in the transfer of conservation science to the public.  相似文献   

8.

Background

Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya.

Methods and Findings

We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall.

Conclusions/Significance

Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.  相似文献   

9.
Three key elements are the drivers of Aedes-borne disease: mosquito infestation, virus circulating, and susceptible human population. However, information on these aspects is not easily available in low- and middle-income countries. We analysed data on factors that influence one or more of those elements to study the first chikungunya epidemic in Rio de Janeiro city in 2016. Using spatio-temporal models, under the Bayesian framework, we estimated the association of those factors with chikungunya reported cases by neighbourhood and week. To estimate the minimum temperature effect in a non-linear fashion, we used a transfer function considering an instantaneous effect and propagation of a proportion of such effect to future times. The sociodevelopment index and the proportion of green areas (areas with agriculture, swamps and shoals, tree and shrub cover, and woody-grass cover) were included in the model with time-varying coefficients, allowing us to explore how their associations with the number of cases change throughout the epidemic. There were 13627 chikungunya cases in the study period. The sociodevelopment index presented the strongest association, inversely related to the risk of cases. Such association was more pronounced in the first weeks, indicating that socioeconomically vulnerable neighbourhoods were affected first and hardest by the epidemic. The proportion of green areas effect was null for most weeks. The temperature was directly associated with the risk of chikungunya for most neighbourhoods, with different decaying patterns. The temperature effect persisted longer where the epidemic was concentrated. In such locations, interventions should be designed to be continuous and to work in the long term. We observed that the role of the covariates changes over time. Therefore, time-varying coefficients should be widely incorporated when modelling Aedes-borne diseases. Our model contributed to the understanding of the spatio-temporal dynamics of an urban Aedes-borne disease introduction in a tropical metropolitan city.  相似文献   

10.
Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT).Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas.Epidemiological data revealed a reduction in the number of reported cases over 2018–2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country.Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.  相似文献   

11.
Public interest in most aspects of the environment is sharply declining relative to other subjects, as measured by internet searches performed on Google. Changes in the search behavior by the public are closely tied to their interests, and those interests are critical to driving public policy. Google Insights for Search (GIFS) was a tool that provided access to search data but is now combined with another tool, Google Trends. We used GIFS to obtain data for 19 environment-related terms from 2001 to 2009. The only environment-related term with large positive slope was climate change. All other terms that we queried had strong negative slopes indicating that searches for these topics dropped over the last decade. Our results suggest that the public is growing less interested in the environment.  相似文献   

12.
The dengue virus affects millions of people every year worldwide, causing large epidemic outbreaks that disrupt people’s lives and severely strain healthcare systems. In the absence of a reliable vaccine against dengue or an effective treatment to manage the illness in humans, most efforts to combat dengue infections have focused on preventing its vectors, mainly the Aedes aegypti mosquito, from flourishing across the world. These mosquito-control strategies need reliable disease activity surveillance systems to be deployed. Despite significant efforts to estimate dengue incidence using a variety of data sources and methods, little work has been done to understand the relative contribution of the different data sources to improved prediction. Additionally, scholarship on the topic had initially focused on prediction systems at the national- and state-levels, and much remains to be done at the finer spatial resolutions at which health policy interventions often occur. We develop a methodological framework to assess and compare dengue incidence estimates at the city level, and evaluate the performance of a collection of models on 20 different cities in Brazil. The data sources we use towards this end are weekly incidence counts from prior years (seasonal autoregressive terms), weekly-aggregated weather variables, and real-time internet search data. We find that both random forest-based models and LASSO regression-based models effectively leverage these multiple data sources to produce accurate predictions, and that while the performance between them is comparable on average, the former method produces fewer extreme outliers, and can thus be considered more robust. For real-time predictions that assume long delays (6–8 weeks) in the availability of epidemiological data, we find that real-time internet search data are the strongest predictors of dengue incidence, whereas for predictions that assume short delays (1–3 weeks), in which the error rate is halved (as measured by relative RMSE), short-term and seasonal autocorrelation are the dominant predictors. Despite the difficulties inherent to city-level prediction, our framework achieves meaningful and actionable estimates across cities with different demographic, geographic and epidemic characteristics.  相似文献   

13.

Background

Despite the fact that urinary tract infection (UTI) is a very frequent disease, little is known about its seasonality in the community.

Methods and Findings

To estimate seasonality of UTI using multiple time series constructed with available proxies of UTI. Eight time series based on two databases were used: sales of urinary antibacterial medications reported by a panel of pharmacy stores in France between 2000 and 2012, and search trends on the Google search engine for UTI-related terms between 2004 and 2012 in France, Germany, Italy, the USA, China, Australia and Brazil. Differences between summers and winters were statistically assessed with the Mann-Whitney test. We evaluated seasonality by applying the Harmonics Product Spectrum on Fast Fourier Transform. Seven time series out of eight displayed a significant increase in medication sales or web searches in the summer compared to the winter, ranging from 8% to 20%. The eight time series displayed a periodicity of one year. Annual increases were seen in the summer for UTI drug sales in France and Google searches in France, the USA, Germany, Italy, and China. Increases occurred in the austral summer for Google searches in Brazil and Australia.

Conclusions

An annual seasonality of UTIs was evidenced in seven different countries, with peaks during the summer.  相似文献   

14.
A better understanding of the relationship between the El Ni?o Southern Oscillation (ENSO), the climatic anomalies it engenders, and malaria epidemics could help mitigate the world-wide increase in incidence of this mosquito-transmitted disease. The purpose of this paper is to assess the possibility of using ENSO forecasts for improving malaria control. This paper analyses the relationship between ENSO events and malaria epidemics in a number of South American countries (Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, and Venezuela). A statistically significant relationship was found between El Ni?o and malaria epidemics in Colombia, Guyana, Peru, and Venezuela. We demonstrate that flooding engenders malaria epidemics in the dry coastal region of northern Peru, while droughts favor the development of epidemics in Colombia and Guyana, and epidemics lag a drought by 1 year in Venezuela. In Brazil, French Guiana, and Ecuador, where we did not detect an ENSO/malaria signal, non-climatic factors such as insecticide sprayings, variation in availability of anti-malaria drugs, and population migration are likely to play a stronger role in malaria epidemics than ENSO-generated climatic anomalies. In some South American countries, El Ni?o forecasts show strong potential for informing public health efforts to control malaria.  相似文献   

15.
The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies.  相似文献   

16.
Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors.  相似文献   

17.
The main contribution of this article is to report general statistics about COVID-19 in Brazil, based on analysis of accumulated series of confirmed cases, deaths and lethality rates, in addition to presenting graphs of moving averages for states and municipalities. The data show that the pandemic in Brazil has grown rapidly since February 25th (date of the first reported case). Furthermore, the lethality rate of COVID-19 in Brazil is greater than in many other Latin American countries (Chile, Argentina, Uruguay and Paraguay). However, the number of new confirmed cases in Brazil has little statistical relevance because only a small part of the population has been tested. In relation to Brazilian municipalities, we highlight the 10 states with the highest lethality rates, ranked from highest to lowest. Also, predictions about the increaseor decrease innew cases and deaths for states and capital cities are presented. These results can help managers and researchers to better guide their decisions regarding COVID-19.  相似文献   

18.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

19.

Introduction

Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions.

Methodology/Principal Findings

We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation.

Significance

These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets.  相似文献   

20.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号