首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Objective:To determine the efficacy of a five-week core stability training program for collegiate athletes on upper extremity performance measures.Methods:Seventy healthy collegiate athletes (age 21.6±1.7years; height 175±4.63 cm; body mass 65.31±5.63 kg) were randomly allocated to experimental (n=35) and control group (n=35). The experimental group has undergone a five-week core stabilisation protocol (three days /week) and regular training, whereas the control group maintained their regular training. The upper quarter Y balance test (UQ-YBT) and Functional throwing performance index (FTPI) were assessed pre and post-training.Results:The results of mixed ANOVA show that there was a significant interaction between time and group variables on YBT (p<0.001, ηp2 =0.759) and FTPI (p<0.001, ηp2 =0.411) after five weeks of core stability training. Statistically, significant improvement was shown in YBT (mean change=15.2, p<0.001) and FTPI (mean change=14.4, p<0.001) in the experimental group; however, there was no significant change observed in both outcomes in the control groups.Conclusion:After five weeks of core stabilisation training program, the measures of UQ-YBT and FTPI were improved, thus advocating the use of a core stabilisation training program among collegiate athletes to enhance their upper extremity performance.  相似文献   

2.
A lack of co-contraction may predispose to knee instability or laxity, resulting in additional shear stress on the internal structures of the knee, especially in below-knee amputee (BKA) subjects. The purposes of this study were: (1) to provide information on how BKA children regulate agonist and antagonist muscle coordination, and (2) to quantify the level of knee co-contraction in able-bodied (AB) and BKA children during the stepping-in-place (SIP) task. Fourteen children (7 BKA vs. 7 AB), paired for age, weight and height, participated in this study. One-way ANOVA with Newman–Keuls post hoc tests (p < 0.05) were used to compare peak power, the co-contraction index, and the resultant agonist and antagonist moments during different phases of SIP. Statistical analysis revealed that BKA children perform the task with similar kinematics than AB children while they generated less co-contraction in both their non-amputated limb and amputated limb, notably because the two groups of children used different agonist and antagonist muscles during the same periods of the SIP. This lack of co-contraction may reduce knee stability and may stress the internal structures of the knee in both the NAL and AL, and may lead to the development of premature knee osteoarthritis.  相似文献   

3.
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.  相似文献   

4.

Objective:

We performed a meta-analysis to evaluate the effects of whole-body vibration on physiologic and functional measurements in children with cerebral palsy.

Design and methods:

We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, Scielo, CINAHL (from the earliest date available to November 2014) for randomized controlled trials, that aimed to investigate the effects of whole-body vibration versus exercise and/or versus control on physiologic and functional measurements in children with cerebral palsy. Two reviewers independently selected the studies. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated.

Results:

Six studies with 176 patients comparing whole-body vibration to exercise and/or control were included. Whole-body vibration resulted in improvement in: gait speed WMDs (0.13 95% CI:0.05 to 0.20); gross motor function dimension E WMDs (2.97 95% CI:0.07 to 5.86) and femur bone density (1.32 95% CI:0.28 to 2.36). The meta-analysis also showed a nonsignificant difference in muscle strength and gross motor function dimension D for participants in the whole-body vibration compared with control group. No serious adverse events were reported.

Conclusions:

Whole-body vibration may improve gait speed and standing function in children with cerebral palsy and could be considered for inclusion in rehabilitation programs.  相似文献   

5.
BackgroundChildren with spastic cerebral palsy gradually lose muscle extensibility but the interplay between the muscular and neurological components of the condition is unclear especially in the pathophysiology of equinovalgus gait.AimThis study aimed to quantify the muscular and neurological disorders in young children with unilateral cerebral palsy, and to investigate the role of the peroneus longus (PL) in equinovalgus gait.Design, setting and population: This was an observational study with prospective assessments of 31 children (median age: 2.9 years, range: 2–6) from outpatient clinic in a tertiary teaching hospital.MethodsClinical measures of plantar flexor extensibility (XV1), stretch response (XV3), and active ankle dorsiflexion angle (XA) were obtained as well as walking velocity and electromyography of tibialis anterior (TA), gastrocnemius medialis (GM) and PL during walking.ResultsWe found reduced extensibility of the triceps surae on the paretic side (effect size r = 0.73, p < 0.001 for soleus and r = 0.68, p < 0.001 for gastrocnemius) and a correlation between reduced triceps surae extensibility and earlier stretch response (ρ = 0.5, p = 0.004). During the swing phase, there was major co-contraction between TA and GM/PL, and significantly larger activation of PL compared to GM (r = 0.46, p = 0.011). Both GM and PL activation decreased with age.ConclusionsOur results suggest gradual deterioration of the muscular disorder and a link between the muscular and neurological disorders, although plantar flexor co-contraction improved with age. The PL was more activated than the GM and may be considered an intervention target to treat equinovalgus gait.  相似文献   

6.

Background

Respiratory and speech problems are commonly observed in children with cerebral palsy (CP). The purpose of this study was to identify if inclination of seat surface could influence respiratory ability and speech production in children with spastic diplegic CP.

Methods

Sixteen children with spastic diplegic CP, ages 6 to 12 years old, participated in this study. The subjects’ respiratory ability (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximum phonation time (MPT)) were measured in three sitting conditions: a seat surface inclined 0°, anterior 15°, and posterior 15°.

Results

FVC was significantly different across three inclinations of seat surface, F(2, 45) = 3.81, P = 0.03. In particular, the subjects’ FVC at a seat surface inclined anterior 15° was significantly greater than at a seat surface inclined posterior 15° (P < 0.05). However, FEV1, PEF, and MPT were not significantly affected by seat surface inclination (P > 0.05).

Conclusions

The results suggest that anterior inclination of seat surface may provide a positive effect on respiratory function in children with spastic diplegic CP.  相似文献   

7.
Purpose: Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological method used to reduce spasticity. It was also assumed that TENS reduces pain and therefore improves limb function. Most of the previous studies about the effect of TENS were done in the lower limb and in stroke patients. There is a lack of enough literature about the direct and indirect effects of TENS in the upper limb. Hence, our study aimed to determine whether TENS combined with therapeutic exercises helps to improves hand function by reducing spasticity in children with hemiplegic cerebral palsy (CP).

Materials and methods: Twenty-nine children with hemiplegic CP were randomly assigned to the TENS group (n?=?15) or the control group (n?=?14). The TENS group received traditional physical therapy with the adjunct application of conventional TENS for 30?minutes (pulse duration, 250 µs; pulse rate, 100?Hz) on the wrist extensors, once daily, 3?days a week, for 8?weeks, while the control group received traditional physical therapy.

Results: The results showed a significant intergroup difference in handgrip strength over the 8-week period. The time to accomplish the Jebsen Taylor Hand Function Test (JTHFT) task decreased by 48% and the ABILHAND-Kids questionnaire scores improved by 23% in the TENS group.

Conclusions: The use of TENS in combination with therapeutic exercise may improve strength and hand function.  相似文献   


8.
To achieve human upright posture (UP) and avoid falls, the central nervous system processes visual, vestibular, and proprioceptive information to activate the appropriate muscles to accelerate or decelerate the body’s center of mass. In this process, sensory-motor (SM) latencies and muscular deficits, even in healthy older adults, may cause falls. This condition is worse for people with chronic neuromuscular deficits (stroke survivors, patients with multiple sclerosis or Parkinson’s disease). One therapeutic approach is to recover or improve quiet UP by utilizing a balance board (BB) (a rotating surface with a tunable stiffness and time delay), where a patient attempts to maintain UP while task difficulty is manipulated. While BBs are commonly used, it is unclear how UP is maintained or how changes in system parameters such as SM latencies and BB time delay affect UP stability. To understand these questions, it is important that mathematical models be developed with enough degrees-of-freedom to capture the many responses evoked during the maintenance of UP on a BB. This paper presents an ankle-hip model of balance on a BB, which is used to study the combined effect of SM latencies and active muscular stiffness of the ankle and hip joints, and the BB stiffness and time delay on UP stability. The analysis predicts that people with proprioceptive, visual, vestibular loss, or increased SM latencies may show either leaning postures or larger body-sway. The results show that the BB time delay and the visual and vestibular feedback have the largest impact on UP stability.  相似文献   

9.
The purpose of this study was to determinate the effect of a 6-week specific-sprinter proprioceptive training program on core stability and gravity center control in sprinters. Thirty-three athletes (age = 21.82 ± 4.84 years, height = 1.76 ± 0.07 m, weight = 67.82 ± 08.04 kg, body mass index = 21.89 ± 2.37 kg · m(-2)) from sprint disciplines were divided into a control (n = 17) and experimental (n = 16) groups. A 30-minute proprioceptive training program was included in the experimental group training sessions, and it was performed for 6 weeks, 3 times each week. This program included 5 exercises with the BOSU and Swiss ball as unstable training tools that were designed to reproduce different moments of the technique of a sprint race. Stability with eyes open (EO) and eyes closed, postural stability, and gravity center control were assessed before and after the training program. Analyses of covariance (α = 0.05) revealed significant differences in stability in the medial-lateral plane with EO, gravity center control in the right direction and gravity center control in the back direction after the exercise intervention in the experimental athletes. Nevertheless, no other significant differences were demonstrated. A sprinter-specific proprioceptive training program provided postural stability with EO and gravity center control measures improvements, although it is not clear if the effect of training would transfer to the general population.  相似文献   

10.
Background aimsPre-clinical evidence indicates that autologous bone marrow-derived mesenchymal stromal cell (BM-MSC) transplantation improves motor function in patients with central nervous system disorders.MethodsAfter providing informed consent, 52 patients with cerebral palsy (CP) who met the study criteria received BM-MSC transplantation. Gross motor function was assessed using the Gross Motor Function Measure (GMFM)-88 and GMFM-66 scales at baseline (before transplantation) and at 1 month, 6 months and 18 months post-transplantation. The participants completed the trial without visible side effects. The GMFM-66 percentile (motor growth curves) was used as the control index of motor function to exclude the interference of improvement with age.ResultsThe score domains A, B, C and D and the total GMFM-88 and GMFM-66 scores in participants increased at 1 month, 6 months and 18 months post-transplantation compared with the baseline value (P < 0.01). The scores of domain E also increased at 6 months and 18 months post-transplantation, although they were not significantly increased at 1 month post-transplantation. There were significant increases in the GMFM-66 score and the GMFM-66 percentile corresponding to patient age and Gross Motor Function Classification System level after cell transplantation.ConclusionsAutologous BM-MSC transplantation appears to be a feasible, safe and effective therapy for patients with CP. The treatment improved the development of children with CP with regard to motor function.  相似文献   

11.
The posttraumatic response to burn injury leads to marked and prolonged skeletal muscle catabolism and weakness, which persist despite standard rehabilitation programs of occupational and physical therapy. We investigated whether a resistance exercise program would attenuate muscle loss and weakness that is typically found in children with thermal injury. We assessed the changes in leg muscle strength and lean body mass in severely burned children with >40% total body surface area burned. Patients were randomized to a 12-wk standard hospital rehabilitation program supplemented with an exercise training program (n = 19) or to a home-based rehabilitation program without exercise (n = 16). Leg muscle strength was assessed before and after the 12-wk rehabilitation or training program at an isokinetic speed of 150 degrees /s. Lean body mass was assessed using dual-energy X-ray absorptiometry. We found that the participation in a resistance exercise program results in a significant improvement in muscle strength, power, and lean body mass relative to a standard rehabilitation program without exercise.  相似文献   

12.
Objectives:Children with Duchene muscular dystrophy have weak muscles, which may impair postural adjustments. These postural adjustments are required for gait and dynamic balance during the daily living activities. The aim was to compare between the effect of bicycle ergometer versus treadmill on functional walking capacity and balance in children with Duchenne muscular dystrophy.Methods:Thirty boys aged from 6 to 10 years old diagnosed as Duchene muscular dystrophy participated in this study. Children were assigned randomly into two groups (A&B). Children in group (A) underwent a designed program of physical therapy plus aerobic exercise training in form of bicycle ergometer while, group (B) received the same program as group (A) and aerobic exercise training by treadmill for one hour, at three times a week for three successive months. Functional walking capacity and balance were assessed before and after treatment by using the 6-minute walk test and Biodex balance system equipment respectively.Results:The post treatment results revealed significant difference in all measured variables (P<0.05) as compared with its pre-treatment results. Post-treatment values indicated that there was a significant difference in all measured variables in favor of group B.Conclusions:treadmill training as an aerobic exercise can improve walking capacity and balance more effectively than bicycle ergometer in children with Duchenne muscular dystrophy.  相似文献   

13.
Objectives:Developmental coordination disorder (DCD) compromises bone health purportedly due to lower levels of physical activity. The potential of an exercise intervention to improve bone health parameters in adolescents with DCD has not previously been studied. This study thus aimed to determine the impact of a multimodal exercise intervention on bone health in this population at-risk of secondary osteoporosis.Methods:Twenty-eight adolescents (17 male, 11 female) aged between 12-17 years (Mage=14.1) with DCD participated in a twice weekly, 13-week generalised multimodal exercise intervention. Peripheral quantitative computed tomography scans of the tibia (4% and 66%) were performed over a six month period. Generalised estimating equations were used to examine the impact of fitness measures on bone parameters over time.Results:An overall improvement trend was observed for bone health, with significant increases at the 66% tibial site for bone mass (4.12% increase, dcohen=0.23, p=0.010) and cortical area (5.42% increase, η2 =12.09, p=0.014). Lower body fitness measures were significantly associated with improvements in bone health parameters, tempered by the degree of motor impairment.Conclusion:A multimodal exercise intervention may be effective in improving bone health of adolescents with DCD. Given the impact of motor impairments, gains may be greater over an extended period of study.  相似文献   

14.
Action Observation Treatment (AOT) has been shown to be effective in the functional recovery of several clinical populations. However, little is known about the neural underpinnings of the clinical efficacy of AOT in children with Cerebral Palsy (CP). Using electroencephalography (EEG), we recorded µ rhythm desynchronization as an index of sensorimotor cortex modulation during a passive action observation task before and after AOT. The relationship between sensorimotor modulation and clinical outcomes was also assessed. Eight children with CP entered the present randomized controlled crossover pilot study in which the experimental AOT preceded or followed a control Videogame Observation Treatment (VOT). Results provide further evidence of the clinical efficacy of AOT for improving hand motor function in CP, as assessed with the Assisting Hand Assessment (AHA) and Melbourne Assessment of Unilateral Upper Limb Function Scale (MUUL). The novel finding is that AOT increases µ rhythm desynchronization at scalp locations corresponding to the hand representation areas. This effect is associated to functional improvement assessed with the MUUL. These preliminary findings, although referred to as a small sample, suggest that AOT may affect upper limb motor recovery in children with CP and modulate the activation of sensorimotor areas, offering a potential neurophysiological correlate to support the clinical utility of AOT.  相似文献   

15.
The purpose of this study was to compare the effects of 5 weeks of physioball core stability and balance exercises with conventional floor exercises in women. The experimental group (n = 15) performed curl-ups and back extensions on the physioball while the control group (n = 15) performed the same exercises on the floor. Baseline and post-training tests included electromyography (EMG) recordings of the rectus abdominus and erector spinae muscles; abdominal, back, and knee strength measurements with the Cybex Norm System; and 2 unilateral stance balance tests. The physioball group was found to have significantly greater mean change in EMG flexion and extension activity (p = 0.04 and p = 0.01, respectively) and greater balance scores (p < 0.01) than the floor exercise group. No significant changes (p > 0.05) were observed for heart rate or Cybex strength measurements. Early adaptations in a short-term core exercise program using the physioball resulted in greater gains in torso balance and EMG neuronal activity in previously untrained women when compared to performing exercises on the floor.  相似文献   

16.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We studied auditory short-latency brainstem and long-latency cortical evoked potentials (EP)in 62 healthy children and 126 children with spastic forms of childrens cerebral palsy, CP (spastic tetraparesis, spastic diplegia, and left-and right-side hemiplegias). An increase in the thresholds of audibility (independently of the CP form) was the most typical disturbance of the function of hearing revealed by the analysis of EP recorded in children suffering from CP. Disturbances in transmission of afferent impulsation in the brain-stem structures of the auditory system and disorders in the perception of different tones within the speech frequency range were also rather frequent. Modifications of the brainstem and cortical auditory EP typical of different CP forms, in particular hemiplegias, are described. It is demonstrated that recording and analysis of EP allow one to diagnose in children with CP those disorders in the hearing function that, in many cases, are of a subclinical nature. This technique allows clinicians to examine the youngest children (when verbal contact with the child is difficult or impossible), to study brainstem EP, and to obtain more objective data; these are significant advantages, as compared with subjective audiometry.Neirofiziologiya/Neurophysiology, Vol.36, No.4, pp.306–312, July-August, 2004.  相似文献   

18.
We collected 3D ultrasound images of the medial gastrocnemius muscle belly (MG) in 16 children with spastic hemiplegic cerebral palsy (SHCP) (mean age: 7.8 years; range: 4–12) and 15 typically-developing (TD) children (mean age: 9.5 years; range: 4–13). All children with SHCP had limited passive dorsiflexion range on the affected side with the knee extended (mean ± 1SD: −9.3° ± 11.8). Scans were taken of both legs with the ankle joint at its resting angle (RA) and at maximum passive dorsiflexion (MD), with the knee extended. RA and MD were more plantar flexed (p < 0.05) in children with SHCP than in TD children.

We measured the volumes and lengths of the MG bellies. We also measured the length of muscle fascicles in the mid-portion of the muscle belly and the angle that the fascicles made with the deep aponeurosis of the muscle. Volumes were normalised to the subject’s body mass; muscle lengths and fascicle lengths were normalised to the length of the fibula.

Normalised MG belly lengths in the paretic limb were shorter than the non-paretic side at MD (p = 0.0001) and RA (p = 0.0236). Normalised muscle lengths of the paretic limb were shorter than those in TD children at both angles (p = 0.0004; p = 0.0003). However, normalised fascicle lengths in the non-paretic and paretic limbs were similar to those measured in TD children (p > 0.05). When compared to the non-paretic limb, muscle volume was reduced in the paretic limb (p < 0.0001), by an average of 28%, and normalised muscle volume in the paretic limb was smaller than in the TD group (p < 0.0001).

The MG is short and small in the paretic limb of children with SHCP. The altered morphology is not due to a decrease in fascicle length. We suggest that MG deformity in SHCP is caused by lack of cross-sectional growth.  相似文献   


19.
RFRP-3对哺乳动物生殖功能和能量平衡的影响   总被引:1,自引:0,他引:1  
Xiang W  Lai P  Zhang BY  Wang PQ  Chu MX  Fan Q  Liu CX  Tan Y 《遗传》2012,34(8):969-976
哺乳动物的生殖功能受体内状态和外部环境综合作用的影响,这种综合作用通过作用于HPG轴的刺激因子和抑制因子之间的相对平衡来调控生殖。RFRP-3是目前下丘脑中唯一已知的HPG轴抑制因子。大量研究证实,RFRP-3能够抑制GnRH和LH的分泌,进而影响生殖功能。然而,RFRP-3对LH分泌的抑制作用是发生在垂体水平还是下丘脑水平尚不清楚。此外,RFRP-3还可能参与了MLT对哺乳动物季节性繁殖调控的信号通路,但是MLT对RFRP-3神经元的作用方式仍不清楚。此外,RFRP-3还可能在能量平衡和动物行为的调控中发挥着重要作用。文章就RFRP-3对HPG轴的调节机制以及其在能量平衡调节和行为调控中的作用进行了系统的阐述,并针对目前尚待解决的一些问题进行了探讨。  相似文献   

20.
Cerebral palsy (CP) considerably impairs the ability to maintain upright stance. The effects of locomotor training and functional electrical stimulation (FES) on postural control were determined in 27 children aged 6–12 years with severe CP. The severity level of the clinical manifestations of CP was classified as 3 according to the Gross Motor Function Classification System (GMFCS). All patients participated in 15 30-min mechanical therapy sessions using robot-assisted passive stepping. In 12 out of 27 children, the locomotion therapy was accompanied by FES. Stabilometry and plantography tests were performed in 23 healthy age-matched children. Postural control in children with CP differed from the stabilograms of healthy children in a forward shift of the center of pressure (COP) projection; higher values of the COP trajectory area and length, the mean amplitude of the COP oscillations, and the absence of COP response to the eyes closed condition. After treatment, the posturographic characteristics tended to normalize in relation to the values obtained in neurologically intact children. The improvement was observed in 43% of children without FES and in 75% of children in the group with FES. Analysis of plantograms revealed normalization of footprints in children who received FES. Thus, it was demonstrated that FES combined with locomotor training resulted in the improvement in vertical posture control in children with severe CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号