共查询到20条相似文献,搜索用时 15 毫秒
1.
Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts 总被引:1,自引:0,他引:1
Yamane K Hayakawa K Kawasaki M Taniguchi M Miyake H 《Journal of plant physiology》2003,160(11):1319-1327
We investigated the effects of drought stress on the ultrastructure of chloroplasts in rice plants. After the seedlings were grown in a glasshouse for 1 month, they were treated for drought stress using two methods. One drought treatment was imposed by reducing the water supply to the plants for 1 month. The other was imposed by withholding water for 2 weeks to examine the withering process of leaves by drought stress. The ultrastructural changes of chloroplasts in bundle sheath cells were more prominent than those in mesophyll cells under both drought stress treatments. Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) content in bundle sheath chloroplasts reduced more dramatically than in mesophyll chloroplasts by drought stress. Although a slight swelling of thylakoids was sometimes observed in bundle sheath chloroplasts in moderate stress for 1 month, the thylakoids were less affected by drought stress than chloroplast envelope. These results suggest that chloroplasts in bundle sheath cells were more sensitive to drought stress than those in mesophyll cells and the thylakoids were less damaged by drought stress compared with chloroplast envelope. 相似文献
2.
Glycolate oxidase isoforms are distributed between the bundle sheath and mesophyll tissues of maize leaves 总被引:5,自引:0,他引:5
Glycolate oxidase (EC 1.1.3.15) activity was detected both in the bundle sheath (79%) and mesophyll (21%) tissues of maize leaves. Three peaks of glycolate oxidase activity were separated from maize leaves by the linear KCl gradient elution from the DEAE-Toyopearl column. The first peak corresponded to the glycolate oxidase isoenzyme located in the bundle sheath cells, the second peak had a dual location and the third peak was related to the mesophyll fraction. The mesophyll isoenzyme showed higher affinity for glycolate (Km 23 micromol x L(-1)) and a higher pH optimum (7.5-7.6) as compared to the bundle sheath isoenzyme (Km 65 micromol x L(-1), pH optimum 7.3). The bundle sheath isoenzyme was strongly activated by isocitrate and by succinate while the mesophyll isoenzyme was activated by isocitrate only slightly and was inhibited by succinate. It is concluded that although the glycolate oxidase activity is mainly attributed to the bundle sheath, conversion of glycolate to glyoxylate occurs also in the mesophyll tissue of C4 plant leaves. 相似文献
3.
M Keunecke B Lindner U Seydel A Schulz U P Hansen 《Journal of experimental botany》2001,52(357):709-714
Rb(+) as a tracer for K(+) was used to test the hypothesis that uptake of K(+) from xylem vessels of small veins into the symplast of maize leaves occurs at the xylem/bundle sheath cell interface. 22.5 min after immersing cut leaves into 20 mM RbCl+1 mM KCl, Rb(+) appeared in the cells of the leaves. Sections of these leaves were freeze-dried. In cryo-thin sections (5 microm), (85)Rb(+) and (41)K(+) content was determined by laser microprobe mass analysis with a large resolution of about 1 microm. Determining the ratio of (85)Rb(+) to (41)K(+) in the cell walls and cytosols of bundle sheath cells, mesophyll cells, and in the cells between the xylem elements resulted in the following picture: In small veins, Rb(+) entered the symplast directly at the xylem/bundle sheath cell interface. 相似文献
4.
Microdamage occurs in trabecular bone under normal loading, which impairs the mechanical properties. Architectural degradation associated with osteoporosis increases damage susceptibility, resulting in a cumulative negative effect on the mechanical properties. Treatments for osteoporosis could be targeted toward increased bone mineral density, improved architecture, or repair and prevention of microdamage. Delineating the relative roles of damage and architectural degradation on trabecular bone strength will provide insight into the most beneficial targets. In this study, damage was induced in bovine trabecular bone samples by axial compression, and the effects on the mechanical properties in shear were assessed. The damaged shear modulus, shear yield stress, ultimate shear stress, and energy to failure all depended on induced damage and decreased as the architecture became more rod-like. The changes in ultimate shear strength and toughness were proportional to the decrease in shear modulus, consistent with an effective decrease in the cross-section of trabeculae based on cellular solid analysis. For typical ranges of bone volume fraction in human bone, the strength and toughness were much more sensitive to decreased volume fraction than to induced mechanical damage. While ultimately repairing or avoiding damage to the bone structure and increasing bone density both improve mechanical properties, increasing bone density is the more important contributor to bone strength. 相似文献
5.
Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants. 相似文献
6.
Localization of nitrite and sulfite reductase in bundle sheath and mesophyll cells of maize leaves 总被引:1,自引:0,他引:1
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2- 3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2- on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis. 相似文献
7.
Ding A 《The Yale journal of biology and medicine》2003,76(3):115-124
Virtually all smoking begins in our population's youth and remains as a habit into those smokers' elder years. If we desire to halt smoking in its infancy, we should seek to deter and induce cessation in the youth years. It has been cited that taxation is an effective means to deter smoking at all ages, particularly efficacious in the youth population. This paper explores the merits of this method of preventative medicine, and intends to investigate differences between the price elasticity of cigarette demand between various cohorts, particularly the adult versus the youth population. We use a two-variable log-log, ordinary least-squares econometric regression to determine the extent that price alterations have on participation rates and quantity smoked. Our results show that youth are quite responsive to price increases showing a decrease of 14 percent prevalence in smoking for a 10 percent increase in price; whereas, the adult population is relatively less responsive to such price changes, exhibiting nearly a 2 percent decrease in prevalence for a 10 percent increase in price. We conclude that taxation is an effective means of socially-enacted preventative medicine in deterring youth smoking. 相似文献
8.
Different pH-dependences of K+ channel activity in bundle sheath and mesophyll cells of maize leaves
The isolation of bundle sheath protoplasts from leaves of Zea mays L. for patch clamp whole-cell experiments presents special problems caused by the suberin layer surrounding these cells.
These problems were overcome by the isolation technique described here. Two different types of whole-cell response were found:
a small response caused by MB-1 (maize bundle sheath conductance type 1) which was instantaneously activated, and another
caused by MB-2 (maize bundle sheath conductance type 2) consisting of an instantaneous response (maize bundle sheath K+ instantaneous current type 2; MB-KI2) similar to but stronger than the current through MB-1 plus a small time-dependent outward
rectifying component (maize bundle sheath activated outward rectifying current; MB-AOR) with voltage-dependent delayed activation.
The occurrence of MB-AOR was often accompanied by a smaller contribution from an inward rectifying channel at negative potentials.
Activation of MB-2 required ATP. It is suggested that MB-1 and MB-2 are related to bundle sheath cells with and without direct
contact with the xylem vessels. In mesophyll cells, only one type of response caused by MM-2 (maize mesophyll conductance
type 2) was found with an instantaneous (maize mesophyll K+ instantaneous current type 2, MM-KI2) and a voltage-dependent delayed component (maize mesophyll activated outward rectifying
current, MM-AOR). The most striking difference between bundle sheath and mesophyll cells was the pH dependence of K+ uptake. At pH 7.2, uptake of K+ by MB-2 was identical to that by MM-2 over the whole voltage range. However, acidification stimulated K+ conductance in bundle sheath cells, whereas a decrease was found for MM-2. At pH 6.15, the bundle sheath channel MB-2 had
more than a 10-fold higher K+ uptake at positive and negative potentials than MM-2. The channel MB-1, too, was stimulated by low pH. This seems to indicate
a putative role for MB-1 and MB-2 in charge balance during uptake of nutrients via cotransport from the xylem into the symplasm.
Received: 23 April 1999 / Accepted: 19 July 1999 相似文献
9.
Chemical modification of myoglobin and cutinase suspended in n-hexane by acyl chlorides and iodine was monitored by electrospray mass spectrometry. The general rate of modification was always much faster for protein adsorbed to supports (silica or polypropylene) than for lyophilized powders. Modification rates were slower for larger acyl chlorides, particularly with lyophilized powders. About 20% of the protein molecules in lyophilized powders were modified much more quickly than the rest, a fraction consistent with those exposed on the surface of the solid. It appears that access to most of the molecules in lyophilized powders requires a very slow stage of solid-phase diffusion. This has been neglected in previous discussion of mass transfer limitation of lyophilized enzymes in organic media, and would not be revealed by the experimental evidence used to dismiss it. Studies of the effects of particle size and dilution with inactive protein are only sensitive to diffusion in liquid-filled pores, not through the solid phase. Slow solid-phase diffusion is not required for access to most support-adsorbed proteins, which is probably a major contributory factor to their enhanced catalytic efficiency in organic media. Hydration of lyophilized proteins accelerates chemical modification rates, as it does their catalytic activity. The main site of reaction of acyl chlorides in organic media is not amino groups (which are probably ion-paired), but is likely to be hydroxyl groups instead. 相似文献
10.
Chemical modification of myoglobin and cutinase suspended in n-hexane by acyl chlorides and iodine was monitored by electrospray mass spectrometry. The general rate of modification was always much faster for protein adsorbed to supports (silica or polypropylene) than for lyophilized powders. Modification rates were slower for larger acyl chlorides, particularly with lyophilized powders. About 20% of the protein molecules in lyophilized powders were modified much more quickly than the rest, a fraction consistent with those exposed on the surface of the solid. It appears that access to most of the molecules in lyophilized powders requires a very slow stage of solid-phase diffusion. This has been neglected in previous discussion of mass transfer limitation of lyophilized enzymes in organic media, and would not be revealed by the experimental evidence used to dismiss it. Studies of the effects of particle size and dilution with inactive protein are only sensitive to diffusion in liquid-filled pores, not through the solid phase. Slow solid-phase diffusion is not required for access to most support-adsorbed proteins, which is probably a major contributory factor to their enhanced catalytic efficiency in organic media. Hydration of lyophilized proteins accelerates chemical modification rates, as it does their catalytic activity. The main site of reaction of acyl chlorides in organic media is not amino groups (which are probably ion-paired), but is likely to be hydroxyl groups instead. 相似文献
11.
The formation of adaptive response to salt stress in mesophyll and bundle sheath cells of maize (Zea mays L.) leaves was studied at the level of operation of enzyme systems that participate in oxidation of malate. Functioning of four malate dehydrogenases (MDH), the components of this system, was studied and found to maintain malate and pyruvate pools, which are required for operation of the Hatch-Slack cycle and actively used for neutralization of salt treatment. The increase in activity of NAD-MDH was related to salt-induced synthesis of the additional isoform of MDH in mesophyll cells. Such changes in the isozyme pattern were not found in bundle sheath cells. 相似文献
12.
13.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h. 相似文献
14.
Humans and macaques are more sensitive to differences in nonaccidental image properties, such as straight vs. curved contours, than to differences in metric properties, such as degree of curvature [Biederman, I., Bar, M., 1999. One-shot viewpoint invariance in matching novel objects. Vis. Res. 39, 2885-2899; Kayaert, G., Biederman, I., Vogels, R., 2003. Shape tuning in macaque inferior temporal cortex. J. Neurosci. 23, 3016-3027; Kayaert, G., Biederman, I., Vogels, R., 2005. Representation of regular and irregular shapes in macaque inferotemporal cortex. Cereb. Cortex 15, 1308-1321]. This differential sensitivity allows facile recognition when the object is viewed at an orientation in depth not previously experienced. In Experiment 1, we trained pigeons to discriminate grayscale, shaded images of four shapes. Pigeons made more confusion errors to shapes that shared more nonaccidental properties. Although the images in that experiment were not well controlled for incidental changes in metric properties, the same results were apparent with better controlled stimuli in Experiment 2: pigeons trained to discriminate a target shape from a metrically changed shape and a nonaccidentally changed shape committed more confusion errors to the metrically changed shape, suggesting that they perceived it to be more similar to the target shape. Humans trained with similar stimuli and procedure exhibited the same tendency to make more errors to the metrically changed shape. These results document the greater saliency of nonaccidental differences for shape recognition and discrimination in a non-primate species and suggest that nonaccidental sensitivity may be characteristic of all shape-discriminating species. 相似文献
15.
Moro AM Brucker N Charão M Bulcão R Freitas F Baierle M Nascimento S Valentini J Cassini C Salvador M Linden R Thiesen F Buffon A Moresco R Garcia SC 《Mutation research》2012,746(1):42-48
Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized; however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. 相似文献
16.
17.
Mesophyll and bundle sheath chloroplasts were prepared fromleaves of Zea mays grown at light intensities of 1.1 and 240µW/cm2, respectively. The mesophyll chloroplasts thatdeveloped at the low intensity and bundle sheath chloroplatsthat developed at both low and high intensities showed higherratios of chlorophyll a/b and P700/chlorophylls compared withthe normal ratios found for the mesophyll chloroplasts thathad developed at the high intensity. Derivative absorption spectrophotometryat 77?K revealed that the low intensity mesophyll chloroplastscontained more of chlorophyll a forms with longer wavelengthred bands than high intensity mesophyll chloroplasts. More ofthe longer wavelength forms of chlorophyll a were also presentin the bundle sheath chloroplasts that had developed at lowand high intensities. All these four types of chloroplasts showedtwo peaks of fluorescence, one at 687 hra and the other at 733or 738 nm. In addition to these peaks, the high intensity mesophyllchloroplasts showed a shoulder at 697 nm, and the two typesof bundle sheath chloroplasts showed a shoulder at 680 nm. (Received June 17, 1974; ) 相似文献
18.
19.
Organization and activity of photosystems in the mesophyll and bundle sheath chloroplasts of maize 总被引:1,自引:0,他引:1
Romanowska E Drozak A Pokorska B Shiell BJ Michalski WP 《Journal of plant physiology》2006,163(6):607-618
Photosystem I and Photosystem II activities, as well as polypeptide content of chlorophyll (Chl)-protein complexes were analyzed in mesophyll (M) and bundle sheath (BS) chloroplasts of maize (Zea mays L.) growing under moderate and very low irradiance. This paper discusses the application of two techniques: mechanical and enzymatic, for separation of M and BS chloroplasts. The enzymatic isolation method resulted in depletion of polypeptides of oxygen evolving complex (OEC) and alphaCF1 subunit of coupling factor; D1 and D2 polypeptides of PSII were reduced by 50%, whereas light harvesting complex of photosystem II (LHCII) proteins were still detectable. Loss of PSII polypeptides correlated with the decreasing of Chl fluorescence measured at room temperature. Using mechanical isolation of chloroplasts from BS cells, all tested polypeptides could be detected. We found a total lack of O2 evolution in BS chloroplasts, but dichlorophenolindophenol (DCPIP) was photoreduced. PSI activity of chloroplasts isolated from 14- and 28-day-old plants was similar in BS chloroplasts in moderate light (ML), but in low light (LL) it was reduced by about 20%. PSI and PSII activities in M chloroplasts of plants growing in ML decreased with aging of plants. In older LL-grown plants, activities of both photosystems were higher than those observed in chloroplasts from ML-grown plants. We suggest that in BS chloroplasts of maize, PSII complex is assembled typically for the agranal membranes (containing mainly stroma thylakoids) and is able to perform very limited electron transport activity. This in turn suggests the role of PSII for poising the redox state of PSI. 相似文献
20.
In maize leaves nitrogen (N)-deprivation induced a significant decline of chlorophyl and total N contents. On the contrary,
sulphur (S) content increased with N-deprivation. The activities of ATP-sulphurylase and O-acetylserine sulphydrylase also
decreased with N-deprivation, but ATP-sulphurylase activity was more sensitive than O-acetylserine sulphydrylase activity
to N-deficiency both in whole leaf extracts and in isolated leaf cells. Finally, N-deprivation induced higher changes in activity
of the two enzymes in mesophyll protoplasts than in bundle sheath strands.
This research was supported by Consiglio Nazionale delle Ricerche-Special grant I.P.R.A.-Subproject 1. Paper N. 73. 相似文献